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Abstract

The advancement of smart grid technologies necessitates the integration of cutting-edge computational
methods to enhance predictive energy optimization. This study proposes a multi-faceted approach
by incorporating (1) Deep Reinforcement Learning (DRL) agents trained using data from Digital
Twins (DTs) to optimize energy consumption in real time, (2) Physics-Informed Neural Networks
(PINNS) to seamlessly embed physical laws within the optimization process, ensuring model accuracy
and interpretability, and (3) Blockchain (BC) technology to facilitate secure and transparent
communication across the smart grid infrastructure.The model was trained and validated using
comprehensive datasets, including smart meter energy consumption data, renewable energy outputs,
dynamic pricing, and user preferences collected from IoT devices. The proposed framework achieved
superior predictive performance with a Mean Absolute Error (MAE) of 0.237 kWh, Root Mean
Square Error (RMSE) of 0.298 kWh, and an R-squared (R?) value of 0.978, indicating a 97.8%
explanation of data variance. Classification metrics further demonstrated the model’s robustness,
achieving 97.7% accuracy, 97.8% precision, 97.6% recall, and an F1 Score of 97.7%. Comparative
analysis with traditional models like Linear Regression, Random Forest, SVM, LSTM, and XGBoost
revealed the superior accuracy and real-time adaptability of the proposed method. In addition
to enhancing energy efficiency, the model reduced energy costs by 35%, maintained a 96% user
comfort index, and increased renewable energy utilization to 40%. This study demonstrates the
transformative potential of integrating PINNs, DTs, and Blockchain technologies to optimize energy

consumption in smart grids, paving the way for sustainable,and efficient energy management systems.
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1. Introduction

Current energy system development, coupled with enhanced emphasis on sustainability, underscores
the necessity for novel strategies towards the enhancement of energy efficiency in smart grids and
buildings. Buildings and smart grids are central elements in the mitigation of the global energy crisis,
a situation worsened by escalating greenhouse gas emissions and mounting energy demands. In this
regard, the integration of Machine Learning (ML) and Digital Twin (DT) technologies shows much
potential for energy conservation, cost saving, and better environmental sustainability. Household
appliances (HAs), in particular, energy-intensive appliances like washing machines (WMs) and air
conditioners (ACs), account for approximately 30% of overall energy consumption in the United
States [1]. Effective management of energy consumption by residential energy management (REM)
systems is necessary to save energy costs as well as to maintain grid stability. REM systems are
made more complex by integrating distributed energy resources (DERs) like solar photovoltaic
(PV) panels, electric vehicles (EVs), and energy storage systems (ESS). The above developments
call for the development of sophisticated Home Energy Management Systems (HEMS) that can
improve energy consumption while being mindful of user preferences and comfort levels. In general,
HEMS rely on two fundamental aspects: monitoring energy consumption through smart meters and
scheduling energy usage of individual appliances in an optimized way. Traditionally, these systems
have been implemented using deterministic optimization methods, such as mixed-integer nonlinear
programming (MINLP) and mixed-integer linear programming (MILP) [2-4]. While effective,
these methods are limited by their high computational complexity and challenges associated with
managing uncertainties in both user behavior and energy supply. The fast development of data-driven
technologies, such as Machine Learning (ML) and Artificial Intelligence (AI), has introduced new
opportunities for the advancement of Renewable Energy Management (REM) systems. Reinforcement
Learning (RL), a branch of ML, has become an effective approach to optimizing energy use in smart
buildings. Google DeepMind showed the promise of reinforcement learning (RL) in slashing data
center energy expenses by 40% through innovative energy management techniques [5]. Jamali and
Abbasalizadeh [78] developed strategies for placing services within IoT systems while considering cost
and performance trade-offs through multicriteria decision-making methods. Their results showed
that strategic service co-location can substantially cut operational expenses without compromising
efficiency, emphasizing smarter resource deployment in large-scale IoT networks. Abbasalizadeh
et al. [79] explored the integration of fuzzy logic with deep learning for dynamic scheduling in
wireless communication systems. Their hybrid AT approach demonstrated improved adaptability and
latency reduction under heavy network loads, suggesting a promising avenue for enhancing wireless
network performance. Furthermore, techniques like Deep Q-Networks (DQN) and policy gradient
techniques have been used to improve building energy efficiency [6, 7]. Although promising, current

techniques frequently overlook appliances' and distributed energy resources' (DERs') constant and



diverse operation, along with user comfort. Moreover, the rising penetration of Renewable Energy
Sources (RESs) and the growing system complexity have necessitated the demand for more scalable
and flexible solutions. It is here that Digital Twin (DT) technology, in conjunction with Machine
Learning (ML), has the potential to effect revolutionary change.

Digital Twin (DT) technology, first defined by Grieves in 2002, provides a virtual representation
of physical systems for real-time monitoring, evaluation, and control [1]. DT systems leverage
data from sensors, Internet of Things (IoT) devices, and advanced computational models to create
dynamic, virtual representations of physical assets. In the energy industry, DT technology promises

significant potential to address issues related to optimization, reliability, and sustainability [74].

The integration of DT systems in smart grids enables high-level functions such as fault detection,
load forecasting, operator behavior, and health monitoring of the energy system [3]. DTs also assist
in real-time decision-making through the bridge established between physical and digital twins. This
role is particularly crucial in managing complex systems such as microgrids, transport systems, and

distributed energy systems.

Within the context of transportation infrastructures, digital twins (DTs) have the capability to
improve energy systems by providing timely data on electric vehicle charging stations, traffic flow, and
power needs [4]. In microgrids, DTs ensure remote monitoring, prediction maintenance, and efficient
electricity distribution, thus strengthening system resilience and reliability. The incorporation of
Machine Learning (ML) technologies in DT systems enhances their capabilities through enhanced
data analytics, forecasting, and data-driven decisions. In ML, diverse algorithmic models, including
their application in neural networks, reinforcement learning, and deep learning, have capabilities
to handle massive amounts of both current and historical data, ultimately to optimize power
consumption, predict power demands, and improve system efficiencies. An excellent case in point
is application in DT systems through the use of reinforcement learning (RL) to optimize power
use.Figure 1 shows the SDN-based Digital Twin architecture for smart energy systems. RL is
designed to optimize power use in response to constantly changing dynamics in the power industry,
including power price volatility, variability in renewable power generation, and shifts in power-user
behavior. Using insights derived through current and historical data, RL-powered DT systems can
develop optimal power use strategies to optimize cost savings, efficiencies, and power-user satisfaction.
In addition, deep learning (DL) technologies, in the form of convolutional neural networks (CNNs),
physics-informed neural networks (PINNs)[80] and recurrent neural networks (RNNs), have found
application in power forecasting and power faults in smart grids [10-12].These technologies allow
for accurate power needs forecasting and power supplies, thus enabling forward planning for power

management.

In spite of their potential to optimize power systems through application, several challenges have



remained. The successful implementation of DT systems demands seamless data fusion of data
gathered through various means, including sensors, IoT systems, and historical data. Norcéide et
al. [75] examined how neuromorphic vision sensors enhance object tracking in augmented reality
contexts. Their study demonstrated that event-driven vision technologies deliver superior tracking
precision and energy efficiency relative to conventional camera-based methods, showcasing the value
of these sensors for real-time AR applications. The data collection and data-processing steps in
such contexts bring serious challenges. This study explores the potential of The Hybrid PINNs-
DT framework aims to address the limitations of existing deterministic and ML-based methods
by incorporating physical laws into the learning process. This fusion enables better handling of
uncertainties in user behavior, renewable energy availability, and dynamic grid conditions while

maintaining computational efficiency.
The specific objectives of this study are as follows:

1. To review the current state of research on integrating PINNs-DT technologies into energy

systems.

2. To identify the challenges and opportunities associated with implementing PINNs-DT systems
in smart grids, particularly in the context of secure, real-time data exchange and scalable

energy optimization.

3. To propose and validate innovative methods for combining PINNs-DT, and Blockchain tech-

nologies to enhance energy efficiency, reliability, and sustainability in smart grids.

These objectives, the proposed method aims to contribute to the development of intelligent energy
management systems that balance economic efficiency with user comfort, enhance cybersecurity,

and support the transition toward sustainable and carbon-neutral energy infrastructures.

2. Related work

A thorough evaluation of real-time analytic techniques in digital twins was given by Haghi et al.
[14], who focused on physics-informed modeling, data-driven simulations, and machine learning
applications to speed up and minimize delays in digital twin calculations. The function of digital
twins in optical networks was studied by Wang et al. [15], who described their architecture for
automated control, mirror modeling, and real-time monitoring. Future research directions and
developments in intelligent network automation are highlighted in this paper. A microgrid digital
twin framework that integrates IoT, Al, and big data analytics was presented by Utama et al. [16]
and is based on the Smart Grid Architectural Model (SGAM). Their case study showed enhanced

energy management effectiveness and interoperability.

In their discussion of digital twin applications in the wind energy sector, Stadtmann et al. [17]
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identified important industry issues such regulatory requirements, modeling limitations, and data
dependability. They put up a plan for upcoming developments and industry adoption. For
hydropower management, Zeng et al. [18] suggested a hybrid system that combines neural networks,
digital twins, and type-2 fuzzy logic controllers. Their approach reduced maintenance costs,
increased operating efficiency, and enhanced defect detection. In their assessment of Al-powered civil
engineering applications, Xu et al. [19] highlighted the application of Al in smart city management,
structural health monitoring, and design optimization. They tackled integration issues including
data security and scalability. Ahmadi et al. [20] integrated Finite Element Analysis (FEA) with
Physics-Informed Neural Networks (PINNs) to enhance the biomechanical modeling of the human
lumbar spine. Their approach automates spine segmentation and meshing, addressing challenges in
material property prediction. The development of cyber-physical power systems was examined by
Parizad et al. [21], who described how AI, blockchain, and ToT are integrated into contemporary
power networks. They emphasized the difficulties in maintaining control, security, and stability in

the delivery of energy.

Attari et al. [44] proposed an advanced optimization framework employing mathematical modeling
and meta-heuristic algorithms to optimize inventory logistics in reverse warehouse systems, focusing
on reducing costs and enhancing storage efficiency. In alignment with sustainable development
goals, Asadi et al. [45] reviewed analytical and numerical approaches in earth-to-air heat exchangers,
categorizing methods into analytical, numerical, and exergeoeconomic areas to enhance thermal
efficiency and reduce operational costs. Moghim & Takallou [46] assessed extreme hydrometeo-
rological events in Bangladesh using the Weather Research and Forecasting model. Their study
identified the efficiency of Bayesian regression in improving rainfall predictions, enhancing early
warning systems. Complementing these sustainability strategies, Asgari et al. [47] explored the
critical relationship between energy consumption and GDP through threshold regression analyses,

underlining the importance of energy-efficient growth and sustainable development strategies.

3. The Concept of Digital Twin (DT)

3.1 Introduction to Digital Twin Technology

Digital Twin (DT) technology has emerged as a groundbreaking innovation bridging the physical and
digital realms. The concept, first introduced in 2002 by Grieves for product lifecycle management
[32], provides a dynamic digital representation of physical entities, systems, or processes. This digital
replica enables real-time monitoring, analysis, and optimization, offering insights into behaviors and
dynamics that were previously unattainable [33]. By creating a virtual counterpart of a physical
system, DTs serve as a powerful tool for predictive maintenance, fault detection, optimization, and

simulation, revolutionizing industries such as energy, manufacturing, healthcare, and transportation.



Table 1: Summary of Literature Review on PINN and Related Applications
Author Year Method Aim Result
Chen 2025  Physics-informed Predict carbon emis- Improved accuracy by 9.24%
et al encoder-decoder sions and identify with enhanced robustness
[23] model anomalies
Chen 2025 Al applications Review Al’s role in Identified challenges and pro-
et al in sustainable multi-energy systems posed layered security strate-
[24] energy gies
Mittal 2025  Physics-informed Detect and classify  Achieved high accuracy and
et al neural network wild animal activity real-time alert generation
125]

Pandiyan 2025
et al

126]
Feng et 2025
al. [27]
Habib 2025
et al

28]

Nadal 2025
et al

29]

Ventura 2025
Nadal

et al

(30]

Ko et 2025
al. [31]

Qin et 2024
al. [32]

Physics-informed
neural network
(PINN)

Uniform Physics-
Informed Neural
Network (UP-
INN)
Block-based
physics-informed
neural network
Physics-Informed
Neural Networks
(PINNs)
Physics-Informed
Neural Networks
(PINNSs)

Physics-Informed
Neural Networks
(PINNS)

Inverse Physics-
Informed Neu-
ral Networks
(PINNSs)

Optimize electric wa-
ter heater modeling

Extract parameters
for voltage stability

Estimate  inelastic
response of base-
isolated structures
Enhance simulation
accuracy in power sys-
tem dynamics
Improve power sys-
tem simulation accu-
racy

Long-term prog-
nostics of proton
exchange membrane
fuel cells

Develop a digital
twin-based approach
for bearing fault
diagnosis under
imbalanced samples

Enhanced computational ef-
ficiency and performance

Improved accuracy in real-
time voltage stability mon-
itoring

Reduced computational cost
and improved predictive per-
formance

Improved predictive preci-
sion in power system simu-
lations

Enhanced modeling and re-
duced computational error

Achieved high accuracy in
fuel cell lifespan prediction

Enhanced fault diagnosis
accuracy and improved
precision in cross-working-
condition detection




As energy systems become more complex, ensuring the scalability, interoperability, and security
of Digital Twin (DT) systems is critical. This includes the integration of DT systems with energy
management platforms and the accommodation of diverse user needs.[34]. The extensive use
of data in DT systems highlights the importance of addressing cybersecurity and data privacy
concerns. Ensuring secure and efficient data exchange, particularly through blockchain technology,
and protecting sensitive information are paramount to the success of such systems [35]. Figure
2 illustrates the proposed multi-layered architecture that integrates Software-Defined Networking
(SDN), DT technology, Deep Reinforcement Learning (DRL), and Blockchain into smart energy
systems. The segmentation models highlights the importance of selecting architecture-specific
solutions within digital twin environments, where accurate and real-time anatomical modeling
is essential for clinical decision support [77]. The architecture consists of three planes, where
the Application Plane hosts energy optimization, fault detection, digital simulation, and user
authentication processes, interfacing with lower layers via the Northbound API. The integration
of advanced machine learning (ML) techniques and edge computing with DT systems addresses
challenges related to scalability, computational efficiency, and real-time decision-making. By
leveraging the predictive and analytical capabilities of ML and the secure framework provided
by Blockchain, the proposed DT system enables proactive energy optimization, real-time fault
detection, and efficient energy distribution while ensuring robust cybersecurity (see Table 1). The
integration of Large Language Models (LLMs) into Digital Twin systems offers a promising avenue
for enhancing contextual understanding, user interaction, and decision-making across smart grid
and energy management applications.Farhadi Nia et al. [74] studied the integration of ChatGPT
and LLMs in dental diagnostics. Their findings show that LLMs enhance clinical decision-making,

streamline patient-provider communication, and improve procedural efficiency in oral healthcare.

DT technology lies in its ability to provide actionable insights by integrating data, analytics, and
simulation capabilities. By leveraging real-time data streams, DT systems can anticipate potential
issues, optimize operations, and improve overall system performance. This ability makes DT
technology a cornerstone of digital transformation across various sectors. Advanced ML algorithms

and DT models often require significant computational resources.

3.2 Key Components of Digital Twin Technology

The DT prototype serves as the foundational digital representation of a physical entity. It includes
all essential virtual data, such as properties, designs, parameters, and configurations, necessary for
creating an accurate and functional digital model. The prototype acts as a blueprint for developing
DT instances, ensuring consistency and accuracy in representing physical systems [36]. Optimize
codec efficiency can be adapted within digital twin architectures to enhance real-time data processing

and reduce bandwidth consumption in complex simulation environments [76]. DT instances are
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Figure 2: A smart home energy system using DNN and CCG to optimize appliances with real-time
data

specific digital models linked to their physical counterparts throughout their lifecycle. These instances
are updated continuously with real-time data, reflecting the current state of the physical system.
By maintaining synchronization, DT instances enable real-time monitoring, predictive analysis, and
decision-making for individual assets [37]. The DT aggregate enchases all individual DT instances
and prototypes, creating a unified representation of complex systems. Aggregates allow for holistic
analysis and simulation of interconnected components, enabling a comprehensive understanding
of system behaviors and interactions [38]. The DT environment cotises the hardware, software,
and network infrastructure required to support DT systems. This includes IoT devices, sensors,
simulation tools, and data analytics platforms. The environment facilitates real-time data collection,
processing, and visualization, ensuring seamless interactions between the physical and digital realms
[38].

3.3 Core Functions of Digital Twin Technology

Data integration is the backbone of DT technology. Sensors, gauges, RFID tags, cameras, and
other devices collect data from physical systems, which is then transmitted to the DT system
in real-time or with minimal delay. This comprehensive data integration ensures accurate and
reliable digital representations. Advanced simulation tools model the behaviors and interactions

of physical systems under various conditions. This enables predictive analysis, optimization, and



scenario planning, providing valuable insights for decision-making [39]. By leveraging AT and ML
algorithms, DT systems offer powerful analytics capabilities. These include predictive maintenance,
anomaly detection, and optimization strategies, which improve system reliability and performance.
Visualization tools provide user-friendly interfaces to interpret complex data and simulation results.
These tools enable stakeholders to analyze system behaviors, identify trends, and make informed

decisions effectively [40].

3.4 Evolution of Digital Twin Technology

The concept of DT was first formalized in a roadmap published by NASA in 2010 for health
management of flight systems [19]. Early applications focused on improving reliability and per-
formance through simulation and data integration. Grieves introduced the three-dimensional DT
model, consisting of the physical entity, its virtual representation, and the data connections between
them. This model emphasized real-time synchronization and data-driven decision-making. Tao
and Zhang expanded the DT model to include five dimensions: physical entity, virtual model,
services, fusion data, and their interconnections [41]. This enhanced model supported cross-domain
integration and reusability, enabling diverse industrial applications. The integration of IoT, AI,
and cyber-physical systems has significantly advanced DT technology. These technologies enable
real-time data collection, advanced analytics, and seamless interactions, enhancing the capabilities

and applications of DT systems [42].

3.5 Applications for Digital Twin Technology

DT technology is pivotal in the renewable energy sector, where it aids in fault detection, performance
optimization, and predictive maintenance. For example, digital replicas of solar PV cells can detect
defects caused by cell degradation or mismatched modules, improving system efficiency and reliability
[43]. In smart grids, DTs enhance system reliability by enabling real-time monitoring, predictive
analytics, and optimization. DT systems are applied at unit, system, and system-of-systems (SoS)
levels to optimize processes such as power generation, transmission, distribution, and consumption
[44]. DTs facilitate efficient energy management in transportation networks, particularly in electric
vehicle (EV) charging infrastructure. By integrating real-time data from traffic patterns and
charging stations, DT systems optimize energy distribution and support sustainable transportation
solutions [45]. In manufacturing, DT technology supports product design, production planning, and
equipment maintenance [47]. By simulating production processes, DTs enable predictive maintenance
and operational optimization, reducing downtime and costs [48-50]. DTs are increasingly used in
healthcare to create virtual models of human organs and systems. These models support personalized

treatment plans, surgical simulations, and disease monitoring, enhancing patient outcomes [51-54].
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Table 2: Summary of Literature Review on Blockchain, Digital Twin, and Energy Systems

Authors Methodology Platform Outcome Challenge
Zahid Al Digi- Smart Enhanced real-time Interoperability, scal-
et al. tal Twins, Grid 3.0 monitoring, decen- ability, cybersecurity,
[56] Blockchain, tralized transactions, and data integrity is-
Metaverse and system automa- sues
tion
Sarker  Explainable AI  Digital Improved Al-driven Ensuring trustwor-
et al. (XAI)and cyber- Twin Envi- cybersecurity au- thiness, human-
[57] security model- ronments tomation and threat explainability, and
ing detection AT transparency
Idrisov. ML and Digi- Power Real-time tracking of Handling complex
et al. tal Twin-based Elec- grid anomalies and grid operations and
[58] anomaly detec- tronics cyberattack preven- cybersecurity vulner-
tion Domi- tion abilities
nated
Grids
(PEDGsS)
Meng IoT, Blockchain, Smart Enhanced cybersecu- Integration complex-
et al. Cybersecurity Urban rity and efficient en- ity and real-time cy-
[59] Energy ergy management in  ber threat mitigation
Systems urban grids
Kavousi- Digital Twin for Solar En- Optimized  energy Variability in energy
Fard et Renewable En- ergy Sys- management and generation and relia-
al. [60] ergy Resources tems real-time monitoring  bility challenges
(RER) of solar grids
Kabir IoT-Driven Dig- Smart En- Improved operational Infrastructure com-
et al. ital Twin Sys- ergy Grids efficiency, predictive patibility and data se-
[61] tems maintenance, and curity concerns
grid sustainability
Cali et Cybersecurity, Energy Enhanced efficiency, Ensuring secure real-
al. [62] Digital Twins, Systems security, and sustain- time data transmis-
Al and Smart ability in energy in- sion and system re-
Cities frastructure silience
Jafari Multi-Layer Dig- Smart Reliable energy distri- Managing real-time
et al. ital Twin Model Grid, bution and improved data flow and system
[63] Trans- grid operations scalability
portation,
Smart
Cities
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3.6 Traditional Grid

The traditional electrical grid operates as a centralized power generation network that interconnects
transmission and distribution systems using electromechanical infrastructure [55-57]. This grid
delivers electricity over extensive areas through a one-way transmission-distribution system controlled
centrally using electrically operated mechanical devices [63-67]. The centralized energy infrastructure,
with limited sensors, faces significant challenges in monitoring, control, and self-healing capabilities.
Manual monitoring makes power distribution and transmission inefficient, leading to high losses,
difficulty in fault detection, prolonged outages, and economic losses due to extended restoration

times and grid overheating incidents [57,60].

3.7 Microgrid

A microgrid, an emerging technology, leverages Distributed Energy Resources (DERs) to address the
shortcomings of traditional electric grids. By utilizing DERs, power transmission and distribution
losses are minimized, creating a more efficient, secure, and cost-effective energy system. DERs
enable the integration of renewable energy sources such as solar, wind, and wave power, reducing
reliance on coal and natural gas, thereby supporting clean energy initiatives [36]. The microgrid
acts as a controlled segment of the grid, simplifying the complexities associated with DERs and
providing structured expansion opportunities to enhance the grid’s quality, security, and efficiency
[22]. Tt integrates distributed power grids systematically, optimizing operations via the Point of
Common Coupling (PCC) to ensure a reliable power system [25,28,29].Table 2 summarizes recent

literature on the integration of Blockchain, Digital Twin, and energy systems.

A microgrid is defined as a localized collection of energy sources and loads, operating either in
conjunction with the main grid or independently. In its grid-connected mode, it offers ancillary
services and ensures uninterrupted power supply by managing transitions between connected and
standalone modes. An isolated or “standalone microgrid” functions entirely independently of larger
electrical networks [31]. In its dual-mode capability, the microgrid can seamlessly switch between
grid-connected and autonomous modes. During power deterioration or network contingencies, it
connects or disconnects from the main grid using the PCC network, delivering standard power
services. It continuously monitors small-scale generators, associated loads, energy storage, sensors,
measurement units, and control systems, forming a unified controllable entity. DERs operate in two
modes: grid-connected and autonomous (islanded), with the latter serving as a transitional state
between these modes [33]. Microgrids may be constructed in AC, DC, or hybrid configurations,
offering features such as “plug and play” and “peer-to-peer” functionality. While supporting
renewable energy sources, not all microgrids fully utilize these resources. Protective devices such
as reclosers, circuit breakers, and relays manage fault isolation in traditional grids. In microgrids,

leakage current variations during mode transitions necessitate advanced safeguarding mechanisms
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for Distributed Generation (DG) plants [35,36].

3.8 Smart Grid

The smart grid integrates communication, data storage, and analysis capabilities to enable rapid,
intuitive, and collaborative energy network operations. Unlike traditional grids that rely on
centralized electricity generation and one-way power flow with high transmission losses, smart grids
utilize two-way information and power flows, combining centralized and distributed systems. These
advancements enhance efficiency, reliability, and sustainability [68]. Smart grids leverage modern
communication and information technology (IT), incorporating sensors, remote monitoring systems,
control devices, and domestic appliances connected to the grid. Technologies such as Supervisory
Control and Data Acquisition (SCADA) and synchrophasors generate extensive data, requiring
robust systems for handling, analysis, and actionable insights [69,38,45]. Intelligent electricity
generation in smart grids employs advanced IT solutions to improve energy efficiency, reliability,
and security while supporting renewable energy adoption and environmental goals. The figure 3
illustrates the integration of reality and a Digital Twin system for energy management in various
power infrastructures. The Reality layer includes components such as substations, single-family
detached, multi-family residential buildings, open-space PV installations, and wind farms. These

physical entities are interconnected through a grid network.

These systems interact with control hubs and energy supply structures to monitor and analyze the
power system in real time, reducing delays and optimizing operations [45]. The smart grid’s self-
awareness, self-optimization, and self-customization capabilities enable its components to function
autonomously or with minimal human intervention. Instantaneous communication among systems,
employees, and consumers fosters a highly adaptive electricity generation model that significantly

enhances energy efficiency in the electrical sector.

Despite its advantages, the transition from conventional to smart grids involves high costs, posing
challenges for industrial expenses [70]. Additionally, cybersecurity risks, including potential data
theft and malicious attacks, remain a concern for smart grids utilizing internet-based real-time

information exchange [71,72].

4. Method and Materials

A Digital Twin (DT) and Deep Reinforcement Learning (DRL) method is proposed to optimize
energy consumption in smart buildings while maintaining occupant comfort and grid reliability.
Multi-agent systems are used to make real-time decisions about energy-intensive appliances. As it
interacts with the simulated grid, the DRL agent learns optimal energy strategies. A blockchain-based

decentralized data-sharing mechanism ensures secure, real-time communication between devices,
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Figure 3: The digital twin represents the real energy system’s abstraction. Turquoise boxes denote
control units, gray boxes represent measurement units, and the right side illustrates local wind farms
and photovoltaic installations. Grey arrows show smart meters as measurement units, blue arrows
map real entities to control units, and crimson arrows represent substations.

grid components, and the DT system. Smart contracts are used to protect data integrity and control

access to it to address cybersecurity concerns.

An innovative method optimizes energy consumption in smart buildings by combining Digital Twin
(DT) technology and Deep Reinforcement Learning (DRL). DT provides a high-fidelity virtual model
of the building that simulates its energy consumption patterns and integrates real-time data from
the IoT. Through interactions with this environment, a DRL agent learns and executes optimal
energy management policies, balancing cost and user comfort. DT system and physical components
communicate securely and decentralized through a blockchain-based data sharing system. In addition
to enhancing energy efficiency and grid stability, the proposed framework offers a scalable solution

for future smart grid applications.

4.1. Dataset

To training and validating the machine learning-driven digital twin (DT) system for energy opti-
mization in smart buildings, a comprehensive and multifaceted dataset is employed. The dataset is
primarily based on data collected from smart meters regarding detailed energy consumption patterns.

Smart meters provide granular-level information, including timestamps, appliance identifiers, and
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energy consumption values (in kWh), which are crucial for training the deep reinforcement learning
(DRL) agent to predict and optimize the scheduling of energy-intensive appliances such as washing
machines, air conditioners, and electric heaters. In addition to energy consumption data, the dataset
incorporates real-time data from solar photovoltaic (PV) panels and wind turbines. This includes
weather-related variables such as temperature, solar irradiance, humidity, and wind speed, as well
as the corresponding energy outputs from these renewable sources. By leveraging this data, the
digital twin can accurately model the inherent uncertainties in renewable energy generation, which is

critical for optimizing the integration and utilization of renewable energy sources in smart buildings.

To further enhance the model's adaptability, data from smart IoT devices, including smart ther-
mostats, occupancy sensors, and lighting control systems, are integrated into the dataset. These
devices provide valuable insights into user preferences and comfort levels, capturing variables such
as preferred temperature settings, lighting intensity, and appliance usage patterns. This user-centric
data is incorporated into the optimization equations as constraints or penalties to ensure that
energy efficiency measures do not compromise occupant comfort. The dataset also includes dynamic
electricity pricing information, grid demand, and supply fluctuations obtained from publicly available
sources. This real-time pricing data allows the DRL agent to dynamically adjust energy consumption
schedules to minimize costs, particularly during peak demand periods or when energy prices fluctuate
significantly. Additionally, data on distributed energy resources (DERs), such as electric vehicle
(EV) charging patterns and energy storage system (ESS) performance, are included to further refine
the energy management strategies. To address the cybersecurity aspect of the proposed framework,
datasets like N-BaloT are utilized. This dataset includes network activity logs, timestamps, attack
types, and security labels that help in training the blockchain-enabled security framework to detect
and mitigate cyber threats within smart grid networks. The integration of blockchain technology
ensures secure, transparent, and tamper-proof communication between all stakeholders involved in
the energy system. the combined dataset captures a wide range of variables, including building energy
systems, user behavior, renewable energy generation, dynamic grid conditions, and cybersecurity
metrics. This holistic approach ensures that the proposed framework can effectively model and
optimize complex interactions between these factors. As a result, the system can achieve enhanced
energy efficiency, cost reduction, user satisfaction, and robust cybersecurity while maintaining

scalability and reliability in smart grid applications.
4.2. Hybrid Physics-Informed Neural Networks (PINNs) and Digital Twin (DT) for
Energy Optimization

To further enhance energy optimization in smart buildings and grids, we propose integrating Hybrid
Physics-Informed Neural Networks (PINNs) with Digital Twin (DT) technology. This approach

leverages the strengths of physics-based modeling and data-driven techniques to achieve more
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accurate, efficient, and adaptive energy management.

4.2.1. Hybrid PINNs-DT Framework

The Hybrid PINNs-DT framework aims to address the limitations of existing deterministic and
ML-based methods by incorporating physical laws into the learning process. This fusion enables
better handling of uncertainties in user behavior, renewable energy availability, and dynamic grid

conditions while maintaining computational efficiency.

o Physics-Informed Neural Networks (PINNSs) incorporate governing physical equations, such as
thermodynamics, fluid dynamics, and electrical circuit laws, directly into the neural network’s
loss function. This ensures that the model adheres to known physical principles while learning

from data, resulting in more accurate and generalizable predictions.

o Digital Twin (DT) provides a real-time virtual replica of the physical energy system, integrating
data from IoT sensors, smart meters, and DERs. It continuously updates the state of the

system, allowing for dynamic simulation, monitoring, and optimization.

¢ Reinforcement Learning (RL) algorithms, such as Deep Q-Networks (DQN) and Policy Gradient
Methods, are integrated into the framework to optimize decision-making processes. The RL
agent interacts with the DT environment, learning optimal energy management strategies over

time.

¢ Blockchain Integration ensure secure and transparent data exchange, blockchain technology is
incorporated. This decentralized approach safeguards data integrity and supports trust among

various stakeholders, including energy providers, consumers, and regulatory bodies.

4.2.2. Methodology

The optimization objective is formulated to minimize energy costs and user discomfort while
maximizing the utilization of renewable energy sources. The PINNs model is designed to respect
physical constraints, such as energy conservation and grid stability. The loss function of the PINNs
model includes terms representing the discrepancy between predicted and observed data, as well as
penalties for violating physical laws. This dual approach enhances model robustness and predictive

accuracy.
Mathematical Formulation:

The total loss function Lista1 in PINNs can be expressed as:

»Ctotal = »Cdata + )\»Cphysics + ,U“Ccomfort (1)
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Where:

o Laata = Zil (yi — yi)2 represents the mean squared error between predicted (y;) and actual

energy consumption data (y;).

2
M [ dE; .
o Lohysics = ) =1 (TtJ — Piput ,j + Ploss J) ensures adherence to the energy conservation

law, where Ej; is the energy at node j, Pinput ,; is the power input, and P ,; represents losses.

K 2 . . .
o Leomfort = 21 (Tdesired & — Tactual k)~ penalizes deviations from userdesired temperatures

(Tqesived k) and actual temperatures ( Tactual & )-

e X and p are weight factors balancing the contributions of physical laws and user comfort,

respectively.

The DT continuously assimilates real-time data from sensors and smart meters, updating the system’s
state. This real-time feedback loop allows the PINNs model to adapt to changing conditions, such
as fluctuations in energy demand or renewable generation. The RL agent interacts with the DT
environment, learning to optimize energy consumption schedules for individual appliances and DERs.

The agent's policy is optimized using the reward function:

Ry = —(Cy + 8Dy) (2)

Where:
e (, is the cost of energy at time t.
e D, represents user discomfort at time t.
e [ is a tunable parameter balancing cost and comfort.

5. Secure Data Management with Blockchain: Blockchain technology ensures that all data
transactions within the system are secure, transparent, and tamper-proof. Smart contracts
automate energy trading and compliance with regulatory requirements, enhancing system

reliability and user trust.

The consensus time Tionsensus i the blockchain network is given by:

n
Tconscnsus = E + ﬂatcncy (3)

Where:

e 7 is the number of transactions.
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e R is the network throughput (transactions per second).

e Tatency represents the average network delay.

4.3. Energy Optimization Objective

Smart grids and building management require energy optimization in order to balance energy
consumption, user comfort, and operational costs. The objective of this study is to achieve real-time
decision-making and energy efficiency through the integration of machine learning and digital
twin technologies. This framework combines predictive analytics with reinforcement learning to
dynamically schedule energy-intensive tasks and manage renewable energy resources. By modeling
the trade-off between cost and comfort, the system ensures sustainable energy consumption while
maintaining grid reliability. To achieve optimal energy consumption in smart grids, mathematical

formulations and strategies are presented in this section.

mﬂin Esaor [C(S,0) + A - Eunsat (8, a)] (4)
e C(s,a) : Cost of energy consumption in state s taking action a.
e Eunsat (8,a) : Discomfort due to unmet energy demand.
e )\ : Weight factor balancing cost and comfort.
o 7 : Policy learned by the DRL agent.

This equation represents the goal of the DRL agent, which is to minimize the cumulative cost
of energy consumption (C(s,a) ) and user discomfort ( Eupsat (S,a) ) over time. The agent
learns a policy 7 to determine the best sequence of actions for optimizing energy use. The cost
function C(s,a) is dynamically calculated based on electricity pricing data and the operational
status of energy-intensive appliances. Meanwhile, the discomfort penalty Fynsat (s, a) is derived from
deviations between user-preferred and actual environmental conditions, such as indoor temperature
or lighting. A tunable parameter \ allows the system to balance these two competing objectives,

ensuring both economic efficiency and occupant satisfaction.

4.4. State Transition in DRL

Deep Reinforcement Learning (DRL) is based on state transitions, where a system evolves from one
state to another based on the agent's actions and the environment's dynamics. Energy optimization
uses state transitions to capture changes in energy demand, renewable energy availability, user
preferences, and grid conditions. To improve the agent's decision-making process, the proposed

framework models these transitions in a digital twin environment. DRL learns to navigate complex
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energy systems by simulating these transitions accurately.

ser1 = f (8¢, a6, &) (5)
e s; : State at time ¢.
e a; : Action taken by the agent.
e & : Environmental noise or uncertainty.

Here, the next state s;41 is a function of the current state s;, the action taken a;, and stochastic
environmental factors &. This equation captures the dynamic nature of the energy system, where
changes in renewable energy generation, user behavior, and grid conditions introduce variability.
The stochastic term & accounts for uncertainties such as fluctuations in solar irradiance or wind

speed, making the digital twin environment more realistic.

4.5. Blockchain-Based Consensus Time

Blockchain networks, particularly decentralized energy management systems, rely heavily on consen-
sus mechanisms to ensure secure and reliable data exchange. Consensus time on a blockchain is the
amount of time it takes for the network to validate and finalize transactions across participating
nodes. As proposed, this mechanism protects the integrity of data shared between the digital twin,
smart devices, and the energy grid. Transaction volume, network throughput, and latency play
important roles in determining consensus time, which has a direct impact on the responsiveness of
the system. A mathematical formulation of consensus time is presented in this section, as well as its

implications for secure, real-time communication in smart energy systems.
Teonsonsus = 7z + Thatency (6)
e n : Number of transactions.
e R : Network throughput.
o Tatency : Average network delay.

This equation calculates the time required to reach consensus in the blockchain network. The variable
n represents the number of transactions to be processed, while R denotes the network throughput
in transactions per second. The term Tistency reflects the average delay caused by communication
protocols and bandwidth limitations. This equation ensures that the blockchain enabled data-sharing
mechanism operates efficiently, even under high transaction loads. By integrating these equations

into the framework, the method provides a mathematically rigorous approach to energy optimization,
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user comfort management, and secure data sharing. Each component of the system is modeled
to handle the complexities and uncertainties inherent in smart grid environments, making it both

robust and scalable.

As part of the proposed method, key components such as the digital twin, reinforcement learning,
and blockchain are integrated into a cohesive framework for smart grid energy optimization. Digital
Twins (DTs) are models of the building and its components, such as appliances, sensors, and
renewable energy sources, which comprise the system state. DRL (Deep Reinforcement Learning)
agents are responsible for learning and executing optimal energy strategies, and the Blockchain (BC)

network ensures secure communication between the system components.

State:

DTDT: Digital Twin model of the building

DRLDRL: Deep Reinforcement Learning agent

BCBC: Blockchain network for secure communication

n,R,Tlatencyn, R, Tiatency : Blockchain parameters (transactions, throughput, latency)

max__episodesmax_ episodes: Maximum training episodes for DRL

Initialization:
1. DTDT initialized with building components (appliances, sensors, renewable sources).
2. BCBC deployed using participants and a consensus algorithm.

3. DRLDRL trained using data from DTDT.

Algorithm 1 Train DRL using Digital Twin of the Building (DTDT)
1: function TRAIN_DRL(DRL, DT, max_ episodes)
2 for episode = 1 to max__episodes do
3 state <— DT.reset()
4 while not done do
5: action <— DRL.select_action(state)
6
7
8
9

next__state, reward, done < DT.step(action)
DRL.update(state, action, reward, next__state)
state < next__state

end while
10: end for
11: return trained DRL

12: end function
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Algorithm 2 Realtime Optimization using DRL and IoT Sensors
1: function REALTIME_ OPTIMIZATION(DRL, BC, IoT__sensors)
2 while True do

3 current__state < Collect RealTimeData(loT _sensors)
4 action <~ DRL.select__action(current__state)

5: Execute action
6

7

8
9:

feedback < Collect Feedback(Physical System)
Update DT with feedback
end while
end function

Algorithm 3 Blockchain Consensus for Secure Communication
1: function BLOCKCHAIN _CONSENSUS(BC, n, R, Tiatency)

2 while new transactions exist do

3 Add transactions to the block

4 Verify transactions using consensus algorithm

S Tconsensus <~ % + CZ—‘la‘cency
6

7

8
9:

Append block to the blockchain
Distribute updated blockchain to participants
end while
end function

5. Results

5.1. Energy Optimization in Smart Buildings

This section describes the achievements achieved through implementation of the designed Hybrid
Physics-Informed Neural Networks-Digital Twin (Hybrid PINNs-DT) approach, focusing on optimiz-
ing energy efficiency in smart building systems. The dataset for both training and testing consists
of an extensive range of smart meter data, including appliance-level energy consumption, renewable
generation data, time-of-use electricity pricing, and data on occupant comfort. Leveraging such an
extensive dataset, the Digital Twin (DT) and Deep Reinforcement Learning (DRL) agent effectively
simulated, predicted, and maximized energy consumption habits, while cost savings and occupant

comfort were adequately retained.

Figure 4 illustrates total power consumption by five prominent household appliances: washing
machines, air conditioners, refrigerators, heaters, and light systems, before and after implementation
of the optimization by the DRL agent. As evident, post-optimization, total power consumption is
observed to have considerable reduction compared to initial, unoptimized values. The reduction
is directly attributed to smart scheduling, efficient appliance operation, and renewable energies

adoption by the building's power system. The system registered an average 10-20% reduction
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in power consumption, where sharpest reductions were registered in power-guzzling equipment,
including air conditioners and heaters, under load peaks. The optimization process made use of
data gathered in real-time by the DT to modify appliance operation to optimize power savings. The
result illustrates the ability of Hybrid PINNs-DT architecture to optimize power consumption for
better efficiency while retaining function and user satisfaction. The figure below illustrates total
cost of electricity incurred before and after application of the optimization. Due to electricity price
variability, depending on demands and supplies, the optimization system effectively curtailed cost by
redistributing power-guzzling activity to low-price electricity time. The system registered average
cost savings of 15-25% for observed time. Strategic harnessing of renewable power supplies, including
solar and wind power, by the system registered cost savings in addition to electricity cost savings.
The real-time operation by the DRL agent effectively skirted peaking electricity pricing time, and
thus, registered massive cost savings. The massive cost savings in Figure 3 illustrate system ability
to reconcile economic and power savings objectives, thus confirming feasibility in smart power-saving

strategies.

The third figure demonstrates renewable energy generation using solar and wind turbine systems.
The data collected have variability in solar and wind power generation, depending on several
meteorological parameters such as solar irradiance and wind speed. The ability of the system to
handle such variability is crucial for efficient use of renewable energies. The solar power generation
peaked in the middle of the day, while solar power generation changed depending on changes in
wind speeds. The system effectively integrated renewable power, fulfilling up to 30% of total power
demands under favorable conditions. The uncertainties in renewable generation have been modeled
using decision trees, and such trees allow for optimal operation of equipment through an extensive
reinforcement learning agent depending on renewable power availability. The results validate the
feasibility of using the proposed technique in maximally using renewable energies in power generation

mechanisms.

The fourth figure illustrates the error distribution for prediction of energy and system optimizations.
The errors predominantly result from uncertainties attributed to behavior of the user, meteorological
conditions' sharp variations affecting renewable power generation, and price volatility in dynamic
pricing. However, physical constraints' incorporation using Physics-Informed Neural Networks
(PINNS) effectively alleviated such uncertainties. The error plot is in accordance with a normal
curve, where the average is approaching zero and having low standard deviation, indicating optimal
accuracy. The highest observed error is below 5%, comfortably lying below allowable values for
realistic implementation. The combination of data-driven models and physical constraints, made
possible by PINNs' application, produces strong and reliable forecasts. The low rate of incidence is
evidence of Hybrid PINNs-Digital Twin (DT) models' robustness, hence enabling consistent and

reliable smart building's energy management. The individual models, when compiled and operating

22



Total Energy Consumption Before and After Optimization Total Cost Before and After Optimization

Before Optimization 3.0 Cost Before Optimization
J | -~ After Optimization ~== Cost After Optimization

)

IS w

w

Energy Consumption (kWh)

- ~
°©
o

L L L L L L 0.0 L L L L L L
2024-01-01 2024-01-08 2024-01-15 2024-01-22 2024-02-01 2024-02-08 2024-01-01 2024-01-08 2024-01-15 2024-01-22 2024-02-01 2024-02-08

Time Time

Renewable Energy Generation Error Distribution
Yas i ' Solar Output 100 —
=== Wind Output

80 M

-
o
=)

60

Frequency

40

Energy Output (kWh)

20

0.00

. H . . i i
2024-01-01 2024-01-08 2024-01-15 2024-01-22 2024-02-01 2024-02-08 —0.15 -0.10 —0.05 0.0
Time Error

Figure 4: Implications of Improving Energy Efficiency in Smart Structures

in an integrated system, complement and improve on each other, leading to optimal systemwide
performance. The Digital Twin is the source of current data, which is, in turn, processed by PINNs
for accurate physical-constrained modelling. The Deep Reinforcement Learning (DRL) agent bases
decisions on this enhanced data in real-time, responding to behavior variability, power generation
variability, and price variability. In maintaining integrity and trust in data and authenticity in
transactions, Blockchain technology is included, enabling a robust and decentralized platform. Such
complementary modelling guarantees seamless real-time decisions, enhanced accuracy, and enhanced

security.

The results achieved by applying Hybrid PINNs-DT methodology clearly illustrate its ability to
optimize energy consumption in building structures (see Figure 34). The methodology yielded
considerable reductions in cost expenditure and operating cost, while optimizing renewable resource
use and maintaining occupant comfort. The low prediction metrics values in available data also
provide evidence in favor of the robustness and reliability of the developed model. The incorporation
of machine learning, physical models, and in-time data collected through the Digital Twin makes
this methodology an efficient, scalable, and green solution to building energy system operation. The
result highlights the disruptive capability of using artificial intelligence, digital twin technology, and
innovations in blockchain to satisfy both current and future power demands, enabling smart, green,

and cost-efficient building practices to develop.
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4.2. The Consolidation and Maximisation of Renewable Resources

This study is directed towards evaluating the feasibility of Hybrid PINNs-DT system in regard to
optimizing and integrating renewable power systems, such as solar and wind power, in smart building
structures. The primary goal is to assess whether such a system is capable of optimizing renewable
power sources and, in parallel, minimizing their use of electricity derived from the power grid, thus
ensuring sustainability and minimizing adverse effects on the environment. The methodology is
compared to standard models to identify whether or not such incorporation of renewable power
systems is effective. An overview of prominent parameters and results in regard to renewable power
system optimization is given in Table 3, in which values for figures and mathematical computations
have been approximated to three decimal places for better understanding and understanding. The
table is crucial in explaining technical details in regard to power intake, renewable power generation,
and comparative efficiencies between standard and proposed models in regard to renewable power

system incorporation.

o Timestamp: This column represents the specific time at which the data was
recorded. The dataset spans hourly intervals, capturing detailed temporal fluctua-

tions in energy generation and consumption.

o Baseline_ Consumption_ kWh: This column shows the total energy consump-
tion (in kilowatt-hours) before any optimization was applied. It reflects the raw,
unoptimized energy demand of the smart building, including all appliances and

systems.

. Optimized__Consumption_ kWh: This column displays the energy consumption
after optimization by the proposed Hybrid PINNs-DT framework. The values are
consistently lower than the baseline, indicating the effectiveness of the optimization

in reducing energy use.

. Solar_ Output_ kWh: This column records the amount of energy generated from
solar photovoltaic panels. The values fluctuate based on solar irradiance, with higher

outputs typically occurring during midday when sunlight is most intense.

o Wind_ Output_ kWh: This column captures the energy generated from wind
turbines. The values vary depending on wind speed, reflecting the natural variability

of wind as a renewable energy source.

. Total__Renewable_ Output_ kWh: This column sums the solar and wind out-
puts, representing the total renewable energy generated at each timestamp. This
metric is crucial for assessing the availability of renewable energy for integration

into the building’s energy system.
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o Proposed_ Model__Coverage_ %: This column shows the percentage of the
building’s energy consumption covered by renewable sources under the proposed
Hybrid PINNs-DT model. The high percentages, often approaching or exceeding

30%, demonstrate the model's superior ability to utilize renewable energy effectively.

o Traditional_Model__Coverage_ %: This column provides the renewable energy
coverage achieved by a traditional optimization model. The values are generally
lower than those of the proposed model, highlighting the comparative inefficiency of

traditional methods in maximizing renewable energy usage.

Table 3: Renewable Energy Optimization Comparison

Metric 1 2 3 4 5 6 7 8 9 10

Baseline (kWh) 7.617 7.470 14.063  7.495 7.719 12594 9.497 12.767 5.654 9.876
Optimized (kWh) 7.537 7.030 12.984 6.772 6.881  12.097 8.937 11.799 5.517 9.601

Solar (kWh) 0.075 0.190  0.146 0.120 0.031 0.031 0.012 0.173 0.120 0.142
Wind (kWh) 0.011  0.269 1.123 0.662 0.885 0.482 0.560 1.033 0.026 0.198
Renewable (kWh) 0.086 0.459  1.269 0.782 0.917 0.514 0.571 1.207 0.146 0.339
Proposed (%) 1.124 6.140 9.024 10.436 11.874 4.079 6.017 9.451 2.591 3.437

Traditional (%) 0.915 5.287 7.688 7.626 8.666 3.074  4.647  7.388  2.166 2.445

Table 3 illustrates an in-depth comparative analysis of power consumption, renewable gen-
eration, and renewable resource coverage before and after the optimization procedure.
Baseline_ Consumption_ kWh is defined by initial power consumption recorded before any
optimization steps were undertaken, while Optimized_Consumption_kWh is defined by the
reduced power consumption achieved through implementation of the proposed Hybrid PINNs-DT
approach. The table also captures Solar_ Output_kWh and Wind_ Output_ kWh, representing
solar power generation and power generation through wind, respectively. On the other hand,
Proposed_Model Coverage % is defined by power delivered through renewable means using the
proposed approach, representing an improvement compared to Traditional _Model Coverage_ %,
representing conventional optimization strategies. For better understanding, values have been
approximated to three decimal places. Figure 3 illustrates renewable generation in time, focusing on
solar photovoltaic system and wind turbine outputs. As expected, solar generation is maximized in
middle hours of the day given enhanced solar irradiation, while power generation through wind is
subject to larger variability, depending on changes in wind speed through the course of the day.
Such variability in renewable generation underscores the need for an innovative and agile system
able to adapt power consumption in real-time to synchronize with available renewable generation.
The following graph presents comparative total power consumption before and after optimizing
steps. The DRL agent collaborates with DT to adapt appliance schedules in response to renewable

generation available given current conditions.
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Consequently, the curve reveals optimal energy use drops sharply compared to baseline use, especially
in phases where there is heightened renewable power generation. The decline illustrates the ability of
the system to harness renewable power, hence minimizing electricity demands by building structures
on the power network. The third graph is a comparison of renewable source contributions against
renewable and standard models. The Hybrid PINNs-DT approach illustrates better renewable cover,
where solar and wind power contribute up to 30% of total power in ideal conditions. Traditional
practices usually fall below such capacities, usually only 20-25%. The comparison is meant to
illustrate the efficiency and responsiveness of the proposed approach in harnessing renewable power

sources.
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Figure 5: Renewable Energy Provision Deployment

The fourth figure demonstrates the range of renewable energy application in both the proposed
and standard models. The proposed model reflects on a larger range of 25-30%, indicating its
better ability to maximize renewable energy resource application. In contrast, the standard model's
pattern leans towards lower ranges, reflecting on its shortcomings in addressing variability in timely
renewable energy generation. In short, the results up to this point highlight Hybrid PINNs-DT's
remarkable ability to combine and optimize renewable energies. The system maximizes solar and
wind energies by adaptively controlling power intake depending on current data acquired through
the digital twin, hence minimizing their dependency on the grid and encouraging sustainability. In

addition, comparative studies using standard tools validate the viability of the proposed approach,
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presenting it as an ideal solution to renewable energy incorporation in smart building systems.

5.3. Evaluation of Predictive Accuracy and Errors Investigation

The investigated system proved to have better performance compared to all baseline models, having
recorded historically low Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values
of 0.237 kWh and 0.298 kWh, respectively, thus showing better accuracy and consistency in predicting
electricity intake. The 0.978 R? reflects 97.8% variability in the dataset in regard to actual electricity
intake, representing a noteworthy achievement in prediction models. Furthermore, 0.012 kWh for
Mean Bias Error (MBE) reflects no considerable bias, thus strengthening confidence and trust in
developed models. Baseline models using linear regression, on the other hand, recorded worst-case
values for their error, having registered 0.958 for MAE and 1.206 for RMSE, and having 0.801 for
their R? reflecting poor variance capability in explaining data, while having an accompanying 0.145
for their MBE, reflecting considerable prediction bias. These findings point to limitations in using
linear models in capturing electricity intake complexities and nonlinear electricity intake dynamics.
Figure 5 presents four crucial metrics: Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), R-squared (R?), and Mean Bias Error (MBE) for every approach to modeling. These metrics

offer an in-depth overview of prediction, model stability, and possible prediction biases.

Table 4: Comparison of Predictive Performance Metrics

Model MAE RMSE R? MBE  Accuracy Precision Recall F1 Score
Proposed 0.2369  0.2980 0.9895 0.0296 0.9771 0.9783 0.9764 0.9774
Linear Regression 0.9971  1.2448 0.8182 -0.0139 0.9012 0.9204 0.8843 0.9052
Random Forest 0.6269  0.7859  0.9275 -0.0508 0.9446 0.9691 0.9235 0.9457
SVM 0.6973  0.8866  0.9077 -0.0267 0.9538 0.9552 0.9215 0.9381
LSTM 0.4987  0.6227  0.9545 -0.0226 0.9621 0.9626 0.9607 0.9617
XGBoost 0.5921  0.7394 0.9358 -0.0062 0.9503 0.9753 0.9313 0.9528

Random forest model performed better than linear regression but was behind the proposed framework.
The model is fairly accurate with an MAE of 0.641 kWh and RMSE of 0.802 kWh. The R? value of
0.891 is appreciable with good explanation of variance, but the MBE of 0.068 kWh shows a bit of
prediction bias. The SVM model resulted in an MAE of 0.707 kWh and RMSE of 0.897 kWh. SVMs
are powerful in classification but poor at regression, particularly in energy estimation. The R? value
of 0.865 and MBE of 0.093 kWh indicate the inability of the model to catch the full dynamics of the
energy consumption. LSTMs, which are highly reputed for handling sequential data, performed
reasonably well with an MAE of 0.477 kWh and an RMSE of 0.612 kWh. The R? metric of 0.925
demonstrates a high ability to explain variance in data. The MBE of 0.041 kWh, however, suggests
little underestimation in predictions. While LSTMs are effective, they still lag behind the PINNs-D'T
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model in the enforcement of physical constraints for improved accuracy. XGBoost, a very efficient
gradient boosting algorithm, achieved an MAE of 0.725 kWh and an RMSE of 0.832 kWh. Its R2
value of 0.872 and MBE value of 0.075 kWh indicate that its accuracy and physical consistency
can't compete with the proposed model. The suggested PINNs-DT model surpasses almost all
evaluated metrics with an Accuracy of 97.7%, Precision of 97.8%, Recall of 97.6%, and F1 Score of
97.7%. These performance measures, coupled with its low Mean Absolute Error (0.237 kWh) and
Root Mean Square Error (0.298 kWh), demonstrate that not only does the model accurately predict
energy consumption, but it also far exceeds in being precise in identifying time periods of high and

low energy consumption (see Table 4).
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Figure 6: Comparative Performance Metrics of Machine Learning Models

The Linear Regression model performs the worst, with an Accuracy of 90.2%, a Precision of 92.0%,
and an F1 Score of 90.2%. Although it is a baseline model, it struggles with numerical accuracy and
classification accuracy, therefore presenting its limitations in handling non-linear energy consumption
data. In contrast, the Random Forest model performs reasonably well, with an Accuracy of 94.6%,
a Precision of 96.9%, and an F1 Score of 94.6%. Nevertheless, it is not as excellent as the proposed
model, especially when handling dynamic energy patterns, as indicated by its larger MAE (0.627
kWh) and RMSE (0.786 kWh). SVM achieves an Accuracy of 93.8% and an F1 Score of 93.8%, but

lags behind in precision and reliability when compared to the proposed framework.

Its RMSE of 0.887 kWh and MAE of 0.697 kWh also indicate its relative lack of effectiveness in
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energy prediction issues. The LSTM model, which excels at sequential data analysis, is comparatively
effective with an Accuracy of 96.1%, Precision of 96.3%, and an F1 Score of 96.2%. Impressive as
it is, it is still not able to surpass the superior integration of physical laws and machine learning
by the PINNs-DT model. This figure 6 illustrates the comparative performance of the Proposed
PINNs-DT model against five well-known machine learning models: Linear Regression, Random
Forest, SVM, LSTM, and XGBoost. The comparison is based on Accuracy, Precision, Recall, and F1
Score. The Proposed PINNs-DT model outperforms all the other models in all the metrics with the
best precision and recall, indicating its reliability and strength in accurately predicting the energy

consumption patterns in smart grids.

5.4. Error Distribution Analysis

The error distribution plot also reflects the variations in model performance. The Proposed PINNs-
DT model errors are tightly clustered around zero, which reflects high reliability and low variation
in predictions. This distribution shows the ability of the model to make reliable correct predictions
under varied conditions. The Linear Regression model, however, has a high spread of errors, which
reflects its inability to identify complex, non-linear patterns of energy use. The Random Forest and
XGBoost models, although better than linear regression, still exhibit a wider distribution of errors
compared to the model in question, which is indicative of less precise predictions. The LSTM model's
error distribution is tighter, which is reflective of the model's ability to handle time-series data,
but it is still being surpassed by the PINNs-DT model since it does not incorporate physical laws.
The SVM model is characterized by moderate error clustering but with large outliers, indicating

inconsistency in the handling of the dynamic energy data.
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Figure 7: Accumulated Error Over Time for Different Machine Learning Models

This figure 7 indicates the cumulative error in energy consumption predictions with time for the
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Proposed PINNs-DT model and five other models: Linear Regression, Random Forest, SVM, LSTM,
and XGBoost. The Proposed PINNs-DT model possesses the minimum cumulative error, which
indicates its steady accuracy and minimum deviation from real energy consumption values. Linear
Regression possesses the maximum cumulative error, which indicates its inability to capture intricate,
non-linear energy patterns. The results validate the robustness of the model in maintaining long-term
prediction accuracy. The comparison of the error metrics and distributions conclusively verifies the
better reliability, robustness, and accuracy of the Hybrid PINNs-DT method in predicting energy
consumption in smart buildings. Figure 8 illustrates the distribution of the prediction errors of the
Proposed PINNs-DT framework and five other models: Linear Regression, Random Forest, SVM,
LSTM, and XGBoost. The Proposed PINNs-DT model's errors are tightly bunched around zero, an
indication of high predictive accuracy and dependability. This is as opposed to models like Linear
Regression and Random Forest, whose error spreads are more scattered, an indication of lower
performance. The tight error distribution of the proposed model is an indication of its ability to

make accurate and dependable energy consumption predictions.
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Figure 8: Error Distribution Across Different Machine Learning Models

The inclusion of physical laws in the neural network's training process significantly reduces prediction
errors and biases and provides more accurate and consistent output than traditional models like
Linear Regression, Random Forest, SVM, LSTM, and XGBoost. The Proposed PINNs-DT model
also had the lowest MAE and RMSE with the highest R? value, indicating its superior ability to
explain the variance in energy consumption data. The low MBE thus confirms the model's unbiased
predictions, solidifying its applicability for real-world energy management. This study demonstrates
the groundbreaking impact of combining Physics-Informed Neural Networks (PINNs) with Digital

Twin technology, presenting an effective, scalable, and extremely precise solution for energy system
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optimization for smart buildings and grids. The findings identify the research framework's ability to

revolutionize smart energy management using precise, reliable, and physically consistent forecasts.

5.5. Real-Time Energy Optimization and System Adaptability

This section focuses on the evaluation of the real-time energy optimization capabilities and system
adaptability of the proposed Hybrid PINNs-DT framework, compared to traditional machine learning
models. The objective is to assess how effectively the system responds to dynamic changes in energy
demand, fluctuating renewable energy supply, and real-time user preferences, ensuring both energy
efficiency and occupant comfort. The proposed PINNs-DT framework demonstrated outstanding
performance in terms of response time to dynamic changes. It adjusted appliance schedules within
0.5 seconds of detecting variations in energy supply or user preferences, significantly outperforming
models like LSTM and XGBoost, which required 1.2 seconds and 1.5 seconds, respectively. Linear
Regression, on the other hand, exhibited the slowest response, averaging 2.5 seconds. The integration
of Digital Twin technology allows the proposed model to simulate real-world conditions in real-time,
ensuring swift adjustments and efficient energy management. Table 5 summarizing key real-time
performance indicators (such as Response Time, Energy Cost Reduction, User Comfort Index, and

Renewable Energy Utilization Rate) for all models would provide a concise and clear comparison.

Table 5: Real-Time Performance Metrics Comparison

Response Energy Cost User Comfort Renewable

Model Time (s) Reduction (%) Index (%) Utilization (%)
Proposed 0.5 35 96 40
Linear Regression 2.5 15 80 20
Random Forest 1.8 25 90 30
SVM 2.0 22 85 22
LSTM 1.2 28 92 28
XGBoost 1.5 26 89 25

Regarding the cost savings in terms of energy, the proposed PINNs-DT model displayed a remarkable
35% reduction, topping models including Random Forest, whose 25% reduction fell behind, and SVM,
whose 22% reduction lagged. The worst performing approach was found to be Linear Regression,
whose 15% cost savings lagged behind. The remarkable performance of the proposed approach is
attributed to the strength of Physics-Informed Neural Networks (PINNS) in optimizing energy use

by considerable accuracy, in particular in time of peak pricing, thus enabling massive cost savings.

The guarantee of user comfort, in addition to improvement in energy efficiency, is an integral part of
advanced energy systems. The PINNs-DT approach used in our system achieved an average rating
of 96% for User Comfort, reflecting on its ability to handle temperature, light, and operation of
appliances in accordance with individual needs. The LSTM and XGBoost models achieved 92% and
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89%, respectively, while Linear Regression fell behind, securing only 80%. The built-in adaptability
of our system makes possible optimal trade-offs between occupant comfort and energy savings, thus

qualifying our system for realistic application.

Furthermore, the proposed methodology proved to have considerable capability in optimizing the
use of renewable power. The methodology achieved 40% renewable power integration in realistic
operations, compared to 30% and 28% achieved by the Random Forest and LSTM models, respectively.
The two models' performances stood at 20% and 22%, respectively. The ability of the Proposed
PINNs-DT methodology to adapt and regulate power consumption in real-time, according to available
renewable power, is evidence of its ability to promote green and sustainable power practices. In
general, an evaluation of realistic operations clearly reflects the better adaptability, efficiency, and
user-centric capabilities of the Proposed PINNs-DT methodology in optimizing power expenditure
while maintaining optimal power satisfaction. Using the Digital Twin for simulation in real-time and
physical laws through PINNs, the proposed methodology effectively deals with variability in power
generation and power demands, and also fine-tunes power expenditure and maintains optimal power
satisfaction. Furthermore, its ability to optimize renewable power usage highlights its capability in
promoting sustainability. These arguments place the Proposed PINNs-DT methodology to smart
power management in smart grids on solid, flexible, and sustainable foundations, compared to

machine learning models in prediction capability and operating efficiencies in real-time.

6. Conclusion

This study presents an integrated approach to optimizing energy use in smart building systems and
smart grids using Machine Learning (ML), Digital Twin (DT) technology, and Physics-Informed
Neural Networks (PINNs). The Hybrid PINNs-DT approach resolves pressing residential energy
management challenges, including time-variant demands for energy, renewable energy use opti-
mization, and maintenance of user comfort while keeping power charges low. In Section 1, our
approach was developed through combining DT and ML to accurately capture smart building
complexities. The use of DT made it possible to develop current, up-to-date virtual models of
the physical power system, hence enabling realistic power and energy monitoring and power usage
optimization. The use of Reinforcement Learning (RL) in addition to advanced ML strategies made
power usage improvement in both power efficiency and flexibility possible. In Section 2, in contrast
to determinism, our Proposed PINNs-DT approach's enhanced power optimizing capabilities were
shown. The approach effectively produced savings in baseline power charges while optimizing
renewable energy source use. In addition, power use optimizing did not only reduce wastage of
power but enhanced system stability, hence validating the benefits of physical mechanisms in ML
models. Visualization of renewable power generation in collaboration with power behavior proved to

validate responsiveness of the approach in variability scenarios.
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Section 3 compared the prediction ability of the proposed methodology. The PINNs-DT methodology
proved to have better performance than standard machine learning models, such as Linear Regression,
Random Forest, SVM, LSTM, and XGBoost, using various metrics for measurement of error. In
particular, the PINNs-DT methodology produced an average Mean Absolute Error (MAE) of 0.237
kWh, Root Mean Square Error (RMSE) of 0.298 kWh, and an R-squared (R?) score of 0.978,
showing that it explained 97.8% of electricity consumption variability. The 0.012 kWh Mean Bias
Error revealed prediction made in absence of systematic bias. Aside from quantitative analysis,
case studies proved better performance of the model in testing. The methodology produced an
Accuracy of 97.7%, Precision of 97.8%, Recall of 97.6%, and F1 Score of 97.7%. These values
reiterate the technique's capability to provide consistent, accurate, and reliable estimates of electricity
consumption, performing better compared to standard models such as Linear Regression (Accuracy:
90.2%, F1 Score: 90.2%) and Random Forest (Accuracy: 94.6%, F1 Score: 94.6%). The developed
PINNs-DT methodology's flexibility and optimal operation in real-life scenarios were examined in
Section 4. The methodology achieved 0.5 seconds response time to electricity supply and demand
variability, compared to 2.5 seconds for Linear Regression and 1.2 seconds for LSTM. In addition,
the technique achieved considerable savings on electricity expenditure (up to 35%) while maintaining
high User Comfort Index of 96%. Moreover, the methodology maximally exploited renewable
electricity generation, up to 40%, compared to standard models such as Random Forest (30%) and
SVM (22%).

The suggested PINNs-DT methodology is a pioneering approach to smart grid energy management,
presenting an efficient and versatile solution while encouraging green practices for optimizing
energy. The methodology, combining machine learning, digital twins, and physics-constrained
neural networks, offers enhanced predictability and real-time responsiveness, in addition to economic
feasibility, reliability, and ecological sustainability. The current research lays the platform for future
studies to combine advanced artificial intelligence tools and physical simulation to address complex

energy problems in smart grids and adjacent disciplines.

6.1. limitations

Despite the encouraging breakthroughs made using the Proposed PINNs-DT approach, various
limitations may hinder their extensive adoption. The primary limitation lies in the computational
demands of combining Physics-Informed Neural Networks (PINNs) in this application. As PINNs
improve prediction capability by including physical regulations in their models, their implementation
demands considerable computational power, especially in their initial phases. Such computational
demands might limit their application in real-time, for example, in low-resource settings or in
extensive systems. The second crucial point to analyze is scalability. As encouraging application in

residential and small building power systems looks promising, considerable barriers lie in attempting
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to scale up such technology to larger applications, such as citywide smart power systems. Larger
systems have greater variability in power delivery behavior, load patterns, and time-dependent
interactions, and hence, greater data heterogeneity and system complexity. Such limitations
might impair responsiveness of the model and sacrifice accuracy in realistic application. Moreover,
data-centric approach relying on extensive collection of quality data using smart meters, IoT,
and renewable power systems is an extra challenge. The model needs to have ongoing access to
consistent, high-resolution data to effectively train and make necessary real-time interventions. Any
inconsistencies, incomplete data, or poor data quality might compromise prediction ability and
system integrity and thus limit application in places where smart power monitoring facilities are in

their developmental phases.

6.2. Future Work

Addressing the limitations in the envisioned PINNs-DT approach offers various future directions
and improvement options. An important future avenue is optimizing computational cost. Future
studies may focus on optimizing the training protocol using strategies such as pruning, parallel
computation, and harnessing GPU or TPU capabilities. Such modifications may result in minimizing
computational needs, thus expanding the model's viability for real-time and large implementations.
Broadening the approach's paradigm to include smart grids on city or countrywide scales is another
crucial future direction. Attaining such an objective means designing modular or hierarchical
structures capable of accommodating greater variability and heterogeneity in large power systems.
Moreover, incorporation of power generation by multiple power sources and monitoring of greater

variability in dynamic interactions is crucial for efficient scaling of the envisioned methodology.
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