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Abstract

The advancement of smart grid technologies necessitates the integration of cutting-edge computational

methods to enhance predictive energy optimization. This study proposes a multi-faceted approach

by incorporating (1) Deep Reinforcement Learning (DRL) agents trained using data from Digital

Twins (DTs) to optimize energy consumption in real time, (2) Physics-Informed Neural Networks

(PINNs) to seamlessly embed physical laws within the optimization process, ensuring model accuracy

and interpretability, and (3) Blockchain (BC) technology to facilitate secure and transparent

communication across the smart grid infrastructure.The model was trained and validated using

comprehensive datasets, including smart meter energy consumption data, renewable energy outputs,

dynamic pricing, and user preferences collected from IoT devices. The proposed framework achieved

superior predictive performance with a Mean Absolute Error (MAE) of 0.237 kWh, Root Mean

Square Error (RMSE) of 0.298 kWh, and an R-squared (R2) value of 0.978, indicating a 97.8%

explanation of data variance. ClassiĄcation metrics further demonstrated the modelŠs robustness,

achieving 97.7% accuracy, 97.8% precision, 97.6% recall, and an F1 Score of 97.7%. Comparative

analysis with traditional models like Linear Regression, Random Forest, SVM, LSTM, and XGBoost

revealed the superior accuracy and real-time adaptability of the proposed method. In addition

to enhancing energy efficiency, the model reduced energy costs by 35%, maintained a 96% user

comfort index, and increased renewable energy utilization to 40%. This study demonstrates the

transformative potential of integrating PINNs, DTs, and Blockchain technologies to optimize energy

consumption in smart grids, paving the way for sustainable,and efficient energy management systems.
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1. Introduction

Current energy system development, coupled with enhanced emphasis on sustainability, underscores

the necessity for novel strategies towards the enhancement of energy efficiency in smart grids and

buildings. Buildings and smart grids are central elements in the mitigation of the global energy crisis,

a situation worsened by escalating greenhouse gas emissions and mounting energy demands. In this

regard, the integration of Machine Learning (ML) and Digital Twin (DT) technologies shows much

potential for energy conservation, cost saving, and better environmental sustainability. Household

appliances (HAs), in particular, energy-intensive appliances like washing machines (WMs) and air

conditioners (ACs), account for approximately 30% of overall energy consumption in the United

States [1]. Effective management of energy consumption by residential energy management (REM)

systems is necessary to save energy costs as well as to maintain grid stability. REM systems are

made more complex by integrating distributed energy resources (DERs) like solar photovoltaic

(PV) panels, electric vehicles (EVs), and energy storage systems (ESS). The above developments

call for the development of sophisticated Home Energy Management Systems (HEMS) that can

improve energy consumption while being mindful of user preferences and comfort levels. In general,

HEMS rely on two fundamental aspects: monitoring energy consumption through smart meters and

scheduling energy usage of individual appliances in an optimized way. Traditionally, these systems

have been implemented using deterministic optimization methods, such as mixed-integer nonlinear

programming (MINLP) and mixed-integer linear programming (MILP) [2-4]. While effective,

these methods are limited by their high computational complexity and challenges associated with

managing uncertainties in both user behavior and energy supply. The fast development of data-driven

technologies, such as Machine Learning (ML) and ArtiĄcial Intelligence (AI), has introduced new

opportunities for the advancement of Renewable Energy Management (REM) systems. Reinforcement

Learning (RL), a branch of ML, has become an effective approach to optimizing energy use in smart

buildings. Google DeepMind showed the promise of reinforcement learning (RL) in slashing data

center energy expenses by 40% through innovative energy management techniques [5]. Jamali and

Abbasalizadeh [78] developed strategies for placing services within IoT systems while considering cost

and performance trade-offs through multicriteria decision-making methods. Their results showed

that strategic service co-location can substantially cut operational expenses without compromising

efficiency, emphasizing smarter resource deployment in large-scale IoT networks. Abbasalizadeh

et al. [79] explored the integration of fuzzy logic with deep learning for dynamic scheduling in

wireless communication systems. Their hybrid AI approach demonstrated improved adaptability and

latency reduction under heavy network loads, suggesting a promising avenue for enhancing wireless

network performance. Furthermore, techniques like Deep Q-Networks (DQN) and policy gradient

techniques have been used to improve building energy efficiency [6, 7]. Although promising, current

techniques frequently overlook appliances' and distributed energy resources' (DERs') constant and
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diverse operation, along with user comfort. Moreover, the rising penetration of Renewable Energy

Sources (RESs) and the growing system complexity have necessitated the demand for more scalable

and Ćexible solutions. It is here that Digital Twin (DT) technology, in conjunction with Machine

Learning (ML), has the potential to effect revolutionary change.

Digital Twin (DT) technology, Ąrst deĄned by Grieves in 2002, provides a virtual representation

of physical systems for real-time monitoring, evaluation, and control [1]. DT systems leverage

data from sensors, Internet of Things (IoT) devices, and advanced computational models to create

dynamic, virtual representations of physical assets. In the energy industry, DT technology promises

signiĄcant potential to address issues related to optimization, reliability, and sustainability [74].

The integration of DT systems in smart grids enables high-level functions such as fault detection,

load forecasting, operator behavior, and health monitoring of the energy system [3]. DTs also assist

in real-time decision-making through the bridge established between physical and digital twins. This

role is particularly crucial in managing complex systems such as microgrids, transport systems, and

distributed energy systems.

Within the context of transportation infrastructures, digital twins (DTs) have the capability to

improve energy systems by providing timely data on electric vehicle charging stations, traffic Ćow, and

power needs [4]. In microgrids, DTs ensure remote monitoring, prediction maintenance, and efficient

electricity distribution, thus strengthening system resilience and reliability. The incorporation of

Machine Learning (ML) technologies in DT systems enhances their capabilities through enhanced

data analytics, forecasting, and data-driven decisions. In ML, diverse algorithmic models, including

their application in neural networks, reinforcement learning, and deep learning, have capabilities

to handle massive amounts of both current and historical data, ultimately to optimize power

consumption, predict power demands, and improve system efficiencies. An excellent case in point

is application in DT systems through the use of reinforcement learning (RL) to optimize power

use.Figure 1 shows the SDN-based Digital Twin architecture for smart energy systems. RL is

designed to optimize power use in response to constantly changing dynamics in the power industry,

including power price volatility, variability in renewable power generation, and shifts in power-user

behavior. Using insights derived through current and historical data, RL-powered DT systems can

develop optimal power use strategies to optimize cost savings, efficiencies, and power-user satisfaction.

In addition, deep learning (DL) technologies, in the form of convolutional neural networks (CNNs),

physics-informed neural networks (PINNs)[80] and recurrent neural networks (RNNs), have found

application in power forecasting and power faults in smart grids [10-12].These technologies allow

for accurate power needs forecasting and power supplies, thus enabling forward planning for power

management.

In spite of their potential to optimize power systems through application, several challenges have
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remained. The successful implementation of DT systems demands seamless data fusion of data

gathered through various means, including sensors, IoT systems, and historical data. Norcéide et

al. [75] examined how neuromorphic vision sensors enhance object tracking in augmented reality

contexts. Their study demonstrated that event-driven vision technologies deliver superior tracking

precision and energy efficiency relative to conventional camera-based methods, showcasing the value

of these sensors for real-time AR applications. The data collection and data-processing steps in

such contexts bring serious challenges. This study explores the potential of The Hybrid PINNs-

DT framework aims to address the limitations of existing deterministic and ML-based methods

by incorporating physical laws into the learning process. This fusion enables better handling of

uncertainties in user behavior, renewable energy availability, and dynamic grid conditions while

maintaining computational efficiency.

The speciĄc objectives of this study are as follows:

1. To review the current state of research on integrating PINNs-DT technologies into energy

systems.

2. To identify the challenges and opportunities associated with implementing PINNs-DT systems

in smart grids, particularly in the context of secure, real-time data exchange and scalable

energy optimization.

3. To propose and validate innovative methods for combining PINNs-DT, and Blockchain tech-

nologies to enhance energy efficiency, reliability, and sustainability in smart grids.

These objectives, the proposed method aims to contribute to the development of intelligent energy

management systems that balance economic efficiency with user comfort, enhance cybersecurity,

and support the transition toward sustainable and carbon-neutral energy infrastructures.

2. Related work

A thorough evaluation of real-time analytic techniques in digital twins was given by Haghi et al.

[14], who focused on physics-informed modeling, data-driven simulations, and machine learning

applications to speed up and minimize delays in digital twin calculations. The function of digital

twins in optical networks was studied by Wang et al. [15], who described their architecture for

automated control, mirror modeling, and real-time monitoring. Future research directions and

developments in intelligent network automation are highlighted in this paper. A microgrid digital

twin framework that integrates IoT, AI, and big data analytics was presented by Utama et al. [16]

and is based on the Smart Grid Architectural Model (SGAM). Their case study showed enhanced

energy management effectiveness and interoperability.

In their discussion of digital twin applications in the wind energy sector, Stadtmann et al. [17]
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Figure 1: Architecture of a Software-DeĄned Networking (SDN)-Based Digital Twin for Smart
Energy Systems.
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identiĄed important industry issues such regulatory requirements, modeling limitations, and data

dependability. They put up a plan for upcoming developments and industry adoption. For

hydropower management, Zeng et al. [18] suggested a hybrid system that combines neural networks,

digital twins, and type-2 fuzzy logic controllers. Their approach reduced maintenance costs,

increased operating efficiency, and enhanced defect detection. In their assessment of AI-powered civil

engineering applications, Xu et al. [19] highlighted the application of AI in smart city management,

structural health monitoring, and design optimization. They tackled integration issues including

data security and scalability. Ahmadi et al. [20] integrated Finite Element Analysis (FEA) with

Physics-Informed Neural Networks (PINNs) to enhance the biomechanical modeling of the human

lumbar spine. Their approach automates spine segmentation and meshing, addressing challenges in

material property prediction. The development of cyber-physical power systems was examined by

Parizad et al. [21], who described how AI, blockchain, and IoT are integrated into contemporary

power networks. They emphasized the difficulties in maintaining control, security, and stability in

the delivery of energy.

Attari et al. [44] proposed an advanced optimization framework employing mathematical modeling

and meta-heuristic algorithms to optimize inventory logistics in reverse warehouse systems, focusing

on reducing costs and enhancing storage efficiency. In alignment with sustainable development

goals, Asadi et al. [45] reviewed analytical and numerical approaches in earth-to-air heat exchangers,

categorizing methods into analytical, numerical, and exergeoeconomic areas to enhance thermal

efficiency and reduce operational costs. Moghim & Takallou [46] assessed extreme hydrometeo-

rological events in Bangladesh using the Weather Research and Forecasting model. Their study

identiĄed the efficiency of Bayesian regression in improving rainfall predictions, enhancing early

warning systems. Complementing these sustainability strategies, Asgari et al. [47] explored the

critical relationship between energy consumption and GDP through threshold regression analyses,

underlining the importance of energy-efficient growth and sustainable development strategies.

3. The Concept of Digital Twin (DT)

3.1 Introduction to Digital Twin Technology

Digital Twin (DT) technology has emerged as a groundbreaking innovation bridging the physical and

digital realms. The concept, Ąrst introduced in 2002 by Grieves for product lifecycle management

[32], provides a dynamic digital representation of physical entities, systems, or processes. This digital

replica enables real-time monitoring, analysis, and optimization, offering insights into behaviors and

dynamics that were previously unattainable [33]. By creating a virtual counterpart of a physical

system, DTs serve as a powerful tool for predictive maintenance, fault detection, optimization, and

simulation, revolutionizing industries such as energy, manufacturing, healthcare, and transportation.
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Table 1: Summary of Literature Review on PINN and Related Applications

Author Year Method Aim Result

Chen
et al.
[23]

2025 Physics-informed
encoder-decoder
model

Predict carbon emis-
sions and identify
anomalies

Improved accuracy by 9.24%
with enhanced robustness

Chen
et al.
[24]

2025 AI applications
in sustainable
energy

Review AIŠs role in
multi-energy systems

IdentiĄed challenges and pro-
posed layered security strate-
gies

Mittal
et al.
[25]

2025 Physics-informed
neural network

Detect and classify
wild animal activity

Achieved high accuracy and
real-time alert generation

Pandiyan
et al.
[26]

2025 Physics-informed
neural network
(PINN)

Optimize electric wa-
ter heater modeling

Enhanced computational ef-
Ąciency and performance

Feng et
al. [27]

2025 Uniform Physics-
Informed Neural
Network (UP-
INN)

Extract parameters
for voltage stability

Improved accuracy in real-
time voltage stability mon-
itoring

Habib
et al.
[28]

2025 Block-based
physics-informed
neural network

Estimate inelastic
response of base-
isolated structures

Reduced computational cost
and improved predictive per-
formance

Nadal
et al.
[29]

2025 Physics-Informed
Neural Networks
(PINNs)

Enhance simulation
accuracy in power sys-
tem dynamics

Improved predictive preci-
sion in power system simu-
lations

Ventura
Nadal
et al.
[30]

2025 Physics-Informed
Neural Networks
(PINNs)

Improve power sys-
tem simulation accu-
racy

Enhanced modeling and re-
duced computational error

Ko et
al. [31]

2025 Physics-Informed
Neural Networks
(PINNs)

Long-term prog-
nostics of proton
exchange membrane
fuel cells

Achieved high accuracy in
fuel cell lifespan prediction

Qin et
al. [32]

2024 Inverse Physics-
Informed Neu-
ral Networks
(PINNs)

Develop a digital
twin-based approach
for bearing fault
diagnosis under
imbalanced samples

Enhanced fault diagnosis
accuracy and improved
precision in cross-working-
condition detection

7



As energy systems become more complex, ensuring the scalability, interoperability, and security

of Digital Twin (DT) systems is critical. This includes the integration of DT systems with energy

management platforms and the accommodation of diverse user needs.[34]. The extensive use

of data in DT systems highlights the importance of addressing cybersecurity and data privacy

concerns. Ensuring secure and efficient data exchange, particularly through blockchain technology,

and protecting sensitive information are paramount to the success of such systems [35]. Figure

2 illustrates the proposed multi-layered architecture that integrates Software-DeĄned Networking

(SDN), DT technology, Deep Reinforcement Learning (DRL), and Blockchain into smart energy

systems. The segmentation models highlights the importance of selecting architecture-speciĄc

solutions within digital twin environments, where accurate and real-time anatomical modeling

is essential for clinical decision support [77]. The architecture consists of three planes, where

the Application Plane hosts energy optimization, fault detection, digital simulation, and user

authentication processes, interfacing with lower layers via the Northbound API. The integration

of advanced machine learning (ML) techniques and edge computing with DT systems addresses

challenges related to scalability, computational efficiency, and real-time decision-making. By

leveraging the predictive and analytical capabilities of ML and the secure framework provided

by Blockchain, the proposed DT system enables proactive energy optimization, real-time fault

detection, and efficient energy distribution while ensuring robust cybersecurity (see Table 1). The

integration of Large Language Models (LLMs) into Digital Twin systems offers a promising avenue

for enhancing contextual understanding, user interaction, and decision-making across smart grid

and energy management applications.Farhadi Nia et al. [74] studied the integration of ChatGPT

and LLMs in dental diagnostics. Their Ąndings show that LLMs enhance clinical decision-making,

streamline patient-provider communication, and improve procedural efficiency in oral healthcare.

DT technology lies in its ability to provide actionable insights by integrating data, analytics, and

simulation capabilities. By leveraging real-time data streams, DT systems can anticipate potential

issues, optimize operations, and improve overall system performance. This ability makes DT

technology a cornerstone of digital transformation across various sectors. Advanced ML algorithms

and DT models often require signiĄcant computational resources.

3.2 Key Components of Digital Twin Technology

The DT prototype serves as the foundational digital representation of a physical entity. It includes

all essential virtual data, such as properties, designs, parameters, and conĄgurations, necessary for

creating an accurate and functional digital model. The prototype acts as a blueprint for developing

DT instances, ensuring consistency and accuracy in representing physical systems [36]. Optimize

codec efficiency can be adapted within digital twin architectures to enhance real-time data processing

and reduce bandwidth consumption in complex simulation environments [76]. DT instances are
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Figure 2: A smart home energy system using DNN and CCG to optimize appliances with real-time
data

speciĄc digital models linked to their physical counterparts throughout their lifecycle. These instances

are updated continuously with real-time data, reĆecting the current state of the physical system.

By maintaining synchronization, DT instances enable real-time monitoring, predictive analysis, and

decision-making for individual assets [37]. The DT aggregate enchases all individual DT instances

and prototypes, creating a uniĄed representation of complex systems. Aggregates allow for holistic

analysis and simulation of interconnected components, enabling a comprehensive understanding

of system behaviors and interactions [38]. The DT environment cotises the hardware, software,

and network infrastructure required to support DT systems. This includes IoT devices, sensors,

simulation tools, and data analytics platforms. The environment facilitates real-time data collection,

processing, and visualization, ensuring seamless interactions between the physical and digital realms

[38].

3.3 Core Functions of Digital Twin Technology

Data integration is the backbone of DT technology. Sensors, gauges, RFID tags, cameras, and

other devices collect data from physical systems, which is then transmitted to the DT system

in real-time or with minimal delay. This comprehensive data integration ensures accurate and

reliable digital representations. Advanced simulation tools model the behaviors and interactions

of physical systems under various conditions. This enables predictive analysis, optimization, and
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scenario planning, providing valuable insights for decision-making [39]. By leveraging AI and ML

algorithms, DT systems offer powerful analytics capabilities. These include predictive maintenance,

anomaly detection, and optimization strategies, which improve system reliability and performance.

Visualization tools provide user-friendly interfaces to interpret complex data and simulation results.

These tools enable stakeholders to analyze system behaviors, identify trends, and make informed

decisions effectively [40].

3.4 Evolution of Digital Twin Technology

The concept of DT was Ąrst formalized in a roadmap published by NASA in 2010 for health

management of Ćight systems [19]. Early applications focused on improving reliability and per-

formance through simulation and data integration. Grieves introduced the three-dimensional DT

model, consisting of the physical entity, its virtual representation, and the data connections between

them. This model emphasized real-time synchronization and data-driven decision-making. Tao

and Zhang expanded the DT model to include Ąve dimensions: physical entity, virtual model,

services, fusion data, and their interconnections [41]. This enhanced model supported cross-domain

integration and reusability, enabling diverse industrial applications. The integration of IoT, AI,

and cyber-physical systems has signiĄcantly advanced DT technology. These technologies enable

real-time data collection, advanced analytics, and seamless interactions, enhancing the capabilities

and applications of DT systems [42].

3.5 Applications for Digital Twin Technology

DT technology is pivotal in the renewable energy sector, where it aids in fault detection, performance

optimization, and predictive maintenance. For example, digital replicas of solar PV cells can detect

defects caused by cell degradation or mismatched modules, improving system efficiency and reliability

[43]. In smart grids, DTs enhance system reliability by enabling real-time monitoring, predictive

analytics, and optimization. DT systems are applied at unit, system, and system-of-systems (SoS)

levels to optimize processes such as power generation, transmission, distribution, and consumption

[44]. DTs facilitate efficient energy management in transportation networks, particularly in electric

vehicle (EV) charging infrastructure. By integrating real-time data from traffic patterns and

charging stations, DT systems optimize energy distribution and support sustainable transportation

solutions [45]. In manufacturing, DT technology supports product design, production planning, and

equipment maintenance [47]. By simulating production processes, DTs enable predictive maintenance

and operational optimization, reducing downtime and costs [48-50]. DTs are increasingly used in

healthcare to create virtual models of human organs and systems. These models support personalized

treatment plans, surgical simulations, and disease monitoring, enhancing patient outcomes [51-54].
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Table 2: Summary of Literature Review on Blockchain, Digital Twin, and Energy Systems

Authors Methodology Platform Outcome Challenge

Zahid
et al.
[56]

AI, Digi-
tal Twins,
Blockchain,
Metaverse

Smart
Grid 3.0

Enhanced real-time
monitoring, decen-
tralized transactions,
and system automa-
tion

Interoperability, scal-
ability, cybersecurity,
and data integrity is-
sues

Sarker
et al.
[57]

Explainable AI
(XAI) and cyber-
security model-
ing

Digital
Twin Envi-
ronments

Improved AI-driven
cybersecurity au-
tomation and threat
detection

Ensuring trustwor-
thiness, human-
explainability, and
AI transparency

Idrisov
et al.
[58]

ML and Digi-
tal Twin-based
anomaly detec-
tion

Power
Elec-
tronics
Domi-
nated
Grids
(PEDGs)

Real-time tracking of
grid anomalies and
cyberattack preven-
tion

Handling complex
grid operations and
cybersecurity vulner-
abilities

Meng
et al.
[59]

IoT, Blockchain,
Cybersecurity

Smart
Urban
Energy
Systems

Enhanced cybersecu-
rity and efficient en-
ergy management in
urban grids

Integration complex-
ity and real-time cy-
ber threat mitigation

Kavousi-
Fard et
al. [60]

Digital Twin for
Renewable En-
ergy Resources
(RER)

Solar En-
ergy Sys-
tems

Optimized energy
management and
real-time monitoring
of solar grids

Variability in energy
generation and relia-
bility challenges

Kabir
et al.
[61]

IoT-Driven Dig-
ital Twin Sys-
tems

Smart En-
ergy Grids

Improved operational
efficiency, predictive
maintenance, and
grid sustainability

Infrastructure com-
patibility and data se-
curity concerns

Cali et
al. [62]

Cybersecurity,
Digital Twins,
AI

Energy
Systems
and Smart
Cities

Enhanced efficiency,
security, and sustain-
ability in energy in-
frastructure

Ensuring secure real-
time data transmis-
sion and system re-
silience

Jafari
et al.
[63]

Multi-Layer Dig-
ital Twin Model

Smart
Grid,
Trans-
portation,
Smart
Cities

Reliable energy distri-
bution and improved
grid operations

Managing real-time
data Ćow and system
scalability
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3.6 Traditional Grid

The traditional electrical grid operates as a centralized power generation network that interconnects

transmission and distribution systems using electromechanical infrastructure [55-57]. This grid

delivers electricity over extensive areas through a one-way transmission-distribution system controlled

centrally using electrically operated mechanical devices [63-67]. The centralized energy infrastructure,

with limited sensors, faces signiĄcant challenges in monitoring, control, and self-healing capabilities.

Manual monitoring makes power distribution and transmission inefficient, leading to high losses,

difficulty in fault detection, prolonged outages, and economic losses due to extended restoration

times and grid overheating incidents [57,60].

3.7 Microgrid

A microgrid, an emerging technology, leverages Distributed Energy Resources (DERs) to address the

shortcomings of traditional electric grids. By utilizing DERs, power transmission and distribution

losses are minimized, creating a more efficient, secure, and cost-effective energy system. DERs

enable the integration of renewable energy sources such as solar, wind, and wave power, reducing

reliance on coal and natural gas, thereby supporting clean energy initiatives [36]. The microgrid

acts as a controlled segment of the grid, simplifying the complexities associated with DERs and

providing structured expansion opportunities to enhance the gridŠs quality, security, and efficiency

[22]. It integrates distributed power grids systematically, optimizing operations via the Point of

Common Coupling (PCC) to ensure a reliable power system [25,28,29].Table 2 summarizes recent

literature on the integration of Blockchain, Digital Twin, and energy systems.

A microgrid is deĄned as a localized collection of energy sources and loads, operating either in

conjunction with the main grid or independently. In its grid-connected mode, it offers ancillary

services and ensures uninterrupted power supply by managing transitions between connected and

standalone modes. An isolated or Şstandalone microgridŤ functions entirely independently of larger

electrical networks [31]. In its dual-mode capability, the microgrid can seamlessly switch between

grid-connected and autonomous modes. During power deterioration or network contingencies, it

connects or disconnects from the main grid using the PCC network, delivering standard power

services. It continuously monitors small-scale generators, associated loads, energy storage, sensors,

measurement units, and control systems, forming a uniĄed controllable entity. DERs operate in two

modes: grid-connected and autonomous (islanded), with the latter serving as a transitional state

between these modes [33]. Microgrids may be constructed in AC, DC, or hybrid conĄgurations,

offering features such as Şplug and playŤ and Şpeer-to-peerŤ functionality. While supporting

renewable energy sources, not all microgrids fully utilize these resources. Protective devices such

as reclosers, circuit breakers, and relays manage fault isolation in traditional grids. In microgrids,

leakage current variations during mode transitions necessitate advanced safeguarding mechanisms
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for Distributed Generation (DG) plants [35,36].

3.8 Smart Grid

The smart grid integrates communication, data storage, and analysis capabilities to enable rapid,

intuitive, and collaborative energy network operations. Unlike traditional grids that rely on

centralized electricity generation and one-way power Ćow with high transmission losses, smart grids

utilize two-way information and power Ćows, combining centralized and distributed systems. These

advancements enhance efficiency, reliability, and sustainability [68]. Smart grids leverage modern

communication and information technology (IT), incorporating sensors, remote monitoring systems,

control devices, and domestic appliances connected to the grid. Technologies such as Supervisory

Control and Data Acquisition (SCADA) and synchrophasors generate extensive data, requiring

robust systems for handling, analysis, and actionable insights [69,38,45]. Intelligent electricity

generation in smart grids employs advanced IT solutions to improve energy efficiency, reliability,

and security while supporting renewable energy adoption and environmental goals. The Ągure 3

illustrates the integration of reality and a Digital Twin system for energy management in various

power infrastructures. The Reality layer includes components such as substations, single-family

detached, multi-family residential buildings, open-space PV installations, and wind farms. These

physical entities are interconnected through a grid network.

These systems interact with control hubs and energy supply structures to monitor and analyze the

power system in real time, reducing delays and optimizing operations [45]. The smart gridŠs self-

awareness, self-optimization, and self-customization capabilities enable its components to function

autonomously or with minimal human intervention. Instantaneous communication among systems,

employees, and consumers fosters a highly adaptive electricity generation model that signiĄcantly

enhances energy efficiency in the electrical sector.

Despite its advantages, the transition from conventional to smart grids involves high costs, posing

challenges for industrial expenses [70]. Additionally, cybersecurity risks, including potential data

theft and malicious attacks, remain a concern for smart grids utilizing internet-based real-time

information exchange [71,72].

4. Method and Materials

A Digital Twin (DT) and Deep Reinforcement Learning (DRL) method is proposed to optimize

energy consumption in smart buildings while maintaining occupant comfort and grid reliability.

Multi-agent systems are used to make real-time decisions about energy-intensive appliances. As it

interacts with the simulated grid, the DRL agent learns optimal energy strategies. A blockchain-based

decentralized data-sharing mechanism ensures secure, real-time communication between devices,
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Figure 3: The digital twin represents the real energy systemŠs abstraction. Turquoise boxes denote
control units, gray boxes represent measurement units, and the right side illustrates local wind farms
and photovoltaic installations. Grey arrows show smart meters as measurement units, blue arrows
map real entities to control units, and crimson arrows represent substations.

grid components, and the DT system. Smart contracts are used to protect data integrity and control

access to it to address cybersecurity concerns.

An innovative method optimizes energy consumption in smart buildings by combining Digital Twin

(DT) technology and Deep Reinforcement Learning (DRL). DT provides a high-Ądelity virtual model

of the building that simulates its energy consumption patterns and integrates real-time data from

the IoT. Through interactions with this environment, a DRL agent learns and executes optimal

energy management policies, balancing cost and user comfort. DT system and physical components

communicate securely and decentralized through a blockchain-based data sharing system. In addition

to enhancing energy efficiency and grid stability, the proposed framework offers a scalable solution

for future smart grid applications.

4.1. Dataset

To training and validating the machine learning-driven digital twin (DT) system for energy opti-

mization in smart buildings, a comprehensive and multifaceted dataset is employed. The dataset is

primarily based on data collected from smart meters regarding detailed energy consumption patterns.

Smart meters provide granular-level information, including timestamps, appliance identiĄers, and
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energy consumption values (in kWh), which are crucial for training the deep reinforcement learning

(DRL) agent to predict and optimize the scheduling of energy-intensive appliances such as washing

machines, air conditioners, and electric heaters. In addition to energy consumption data, the dataset

incorporates real-time data from solar photovoltaic (PV) panels and wind turbines. This includes

weather-related variables such as temperature, solar irradiance, humidity, and wind speed, as well

as the corresponding energy outputs from these renewable sources. By leveraging this data, the

digital twin can accurately model the inherent uncertainties in renewable energy generation, which is

critical for optimizing the integration and utilization of renewable energy sources in smart buildings.

To further enhance the model's adaptability, data from smart IoT devices, including smart ther-

mostats, occupancy sensors, and lighting control systems, are integrated into the dataset. These

devices provide valuable insights into user preferences and comfort levels, capturing variables such

as preferred temperature settings, lighting intensity, and appliance usage patterns. This user-centric

data is incorporated into the optimization equations as constraints or penalties to ensure that

energy efficiency measures do not compromise occupant comfort. The dataset also includes dynamic

electricity pricing information, grid demand, and supply Ćuctuations obtained from publicly available

sources. This real-time pricing data allows the DRL agent to dynamically adjust energy consumption

schedules to minimize costs, particularly during peak demand periods or when energy prices Ćuctuate

signiĄcantly. Additionally, data on distributed energy resources (DERs), such as electric vehicle

(EV) charging patterns and energy storage system (ESS) performance, are included to further reĄne

the energy management strategies. To address the cybersecurity aspect of the proposed framework,

datasets like N-BaIoT are utilized. This dataset includes network activity logs, timestamps, attack

types, and security labels that help in training the blockchain-enabled security framework to detect

and mitigate cyber threats within smart grid networks. The integration of blockchain technology

ensures secure, transparent, and tamper-proof communication between all stakeholders involved in

the energy system. the combined dataset captures a wide range of variables, including building energy

systems, user behavior, renewable energy generation, dynamic grid conditions, and cybersecurity

metrics. This holistic approach ensures that the proposed framework can effectively model and

optimize complex interactions between these factors. As a result, the system can achieve enhanced

energy efficiency, cost reduction, user satisfaction, and robust cybersecurity while maintaining

scalability and reliability in smart grid applications.

4.2. Hybrid Physics-Informed Neural Networks (PINNs) and Digital Twin (DT) for

Energy Optimization

To further enhance energy optimization in smart buildings and grids, we propose integrating Hybrid

Physics-Informed Neural Networks (PINNs) with Digital Twin (DT) technology. This approach

leverages the strengths of physics-based modeling and data-driven techniques to achieve more
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accurate, efficient, and adaptive energy management.

4.2.1. Hybrid PINNs-DT Framework

The Hybrid PINNs-DT framework aims to address the limitations of existing deterministic and

ML-based methods by incorporating physical laws into the learning process. This fusion enables

better handling of uncertainties in user behavior, renewable energy availability, and dynamic grid

conditions while maintaining computational efficiency.

• Physics-Informed Neural Networks (PINNs) incorporate governing physical equations, such as

thermodynamics, Ćuid dynamics, and electrical circuit laws, directly into the neural networkŠs

loss function. This ensures that the model adheres to known physical principles while learning

from data, resulting in more accurate and generalizable predictions.

• Digital Twin (DT) provides a real-time virtual replica of the physical energy system, integrating

data from IoT sensors, smart meters, and DERs. It continuously updates the state of the

system, allowing for dynamic simulation, monitoring, and optimization.

• Reinforcement Learning (RL) algorithms, such as Deep Q-Networks (DQN) and Policy Gradient

Methods, are integrated into the framework to optimize decision-making processes. The RL

agent interacts with the DT environment, learning optimal energy management strategies over

time.

• Blockchain Integration ensure secure and transparent data exchange, blockchain technology is

incorporated. This decentralized approach safeguards data integrity and supports trust among

various stakeholders, including energy providers, consumers, and regulatory bodies.

4.2.2. Methodology

The optimization objective is formulated to minimize energy costs and user discomfort while

maximizing the utilization of renewable energy sources. The PINNs model is designed to respect

physical constraints, such as energy conservation and grid stability. The loss function of the PINNs

model includes terms representing the discrepancy between predicted and observed data, as well as

penalties for violating physical laws. This dual approach enhances model robustness and predictive

accuracy.

Mathematical Formulation:

The total loss function Ltotal in PINNs can be expressed as:

Ltotal = Ldata + λLphysics + µLcomfort (1)
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Where:

• Ldata =
∑N

i=1
(ŷi − yi)

2
represents the mean squared error between predicted (ŷi) and actual

energy consumption data (yi).

• Lphysics =
∑M

j=1


dEj

dt
− Pinput ,j + Ploss ,j

2

ensures adherence to the energy conservation

law, where Ej is the energy at node j, Pinput ,j is the power input, and Ploss ,j represents losses.

• Lcomfort =
∑K

k=1
(Tdesired ,k − Tactual ,k)

2
penalizes deviations from userdesired temperatures

(Tdesired ,k) and actual temperatures ( Tactual ,k ).

• λ and µ are weight factors balancing the contributions of physical laws and user comfort,

respectively.

The DT continuously assimilates real-time data from sensors and smart meters, updating the systemŠs

state. This real-time feedback loop allows the PINNs model to adapt to changing conditions, such

as Ćuctuations in energy demand or renewable generation. The RL agent interacts with the DT

environment, learning to optimize energy consumption schedules for individual appliances and DERs.

The agent's policy is optimized using the reward function:

Rt = − (Ct + βDt) (2)

Where:

• Ct is the cost of energy at time t.

• Dt represents user discomfort at time t.

• β is a tunable parameter balancing cost and comfort.

5. Secure Data Management with Blockchain: Blockchain technology ensures that all data

transactions within the system are secure, transparent, and tamper-proof. Smart contracts

automate energy trading and compliance with regulatory requirements, enhancing system

reliability and user trust.

The consensus time Tconsensus in the blockchain network is given by:

Tconsensus =
n

R
+ Tlatency (3)

Where:

• n is the number of transactions.

17



• R is the network throughput (transactions per second).

• Tlatency represents the average network delay.

4.3. Energy Optimization Objective

Smart grids and building management require energy optimization in order to balance energy

consumption, user comfort, and operational costs. The objective of this study is to achieve real-time

decision-making and energy efficiency through the integration of machine learning and digital

twin technologies. This framework combines predictive analytics with reinforcement learning to

dynamically schedule energy-intensive tasks and manage renewable energy resources. By modeling

the trade-off between cost and comfort, the system ensures sustainable energy consumption while

maintaining grid reliability. To achieve optimal energy consumption in smart grids, mathematical

formulations and strategies are presented in this section.

min
π

Es,a∼π [C(s, a) + λ · Eunsat(s, a)] (4)

• C(s, a) : Cost of energy consumption in state s taking action a.

• Eunsat (s, a) : Discomfort due to unmet energy demand.

• λ : Weight factor balancing cost and comfort.

• π : Policy learned by the DRL agent.

This equation represents the goal of the DRL agent, which is to minimize the cumulative cost

of energy consumption (C(s, a) ) and user discomfort ( Eunsat (s, a) ) over time. The agent

learns a policy π to determine the best sequence of actions for optimizing energy use. The cost

function C(s, a) is dynamically calculated based on electricity pricing data and the operational

status of energy-intensive appliances. Meanwhile, the discomfort penalty Eunsat (s, a) is derived from

deviations between user-preferred and actual environmental conditions, such as indoor temperature

or lighting. A tunable parameter λ allows the system to balance these two competing objectives,

ensuring both economic efficiency and occupant satisfaction.

4.4. State Transition in DRL

Deep Reinforcement Learning (DRL) is based on state transitions, where a system evolves from one

state to another based on the agent's actions and the environment's dynamics. Energy optimization

uses state transitions to capture changes in energy demand, renewable energy availability, user

preferences, and grid conditions. To improve the agent's decision-making process, the proposed

framework models these transitions in a digital twin environment. DRL learns to navigate complex
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energy systems by simulating these transitions accurately.

st+1 = f (st, at, ξt) (5)

• st : State at time t.

• at : Action taken by the agent.

• ξt : Environmental noise or uncertainty.

Here, the next state st+1 is a function of the current state st, the action taken at, and stochastic

environmental factors ξt. This equation captures the dynamic nature of the energy system, where

changes in renewable energy generation, user behavior, and grid conditions introduce variability.

The stochastic term ξt accounts for uncertainties such as Ćuctuations in solar irradiance or wind

speed, making the digital twin environment more realistic.

4.5. Blockchain-Based Consensus Time

Blockchain networks, particularly decentralized energy management systems, rely heavily on consen-

sus mechanisms to ensure secure and reliable data exchange. Consensus time on a blockchain is the

amount of time it takes for the network to validate and Ąnalize transactions across participating

nodes. As proposed, this mechanism protects the integrity of data shared between the digital twin,

smart devices, and the energy grid. Transaction volume, network throughput, and latency play

important roles in determining consensus time, which has a direct impact on the responsiveness of

the system. A mathematical formulation of consensus time is presented in this section, as well as its

implications for secure, real-time communication in smart energy systems.

Tconsensus =
n

R
+ Tlatency (6)

• n : Number of transactions.

• R : Network throughput.

• Tlatency : Average network delay.

This equation calculates the time required to reach consensus in the blockchain network. The variable

n represents the number of transactions to be processed, while R denotes the network throughput

in transactions per second. The term Tlatency reĆects the average delay caused by communication

protocols and bandwidth limitations. This equation ensures that the blockchain enabled data-sharing

mechanism operates efficiently, even under high transaction loads. By integrating these equations

into the framework, the method provides a mathematically rigorous approach to energy optimization,
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user comfort management, and secure data sharing. Each component of the system is modeled

to handle the complexities and uncertainties inherent in smart grid environments, making it both

robust and scalable.

As part of the proposed method, key components such as the digital twin, reinforcement learning,

and blockchain are integrated into a cohesive framework for smart grid energy optimization. Digital

Twins (DTs) are models of the building and its components, such as appliances, sensors, and

renewable energy sources, which comprise the system state. DRL (Deep Reinforcement Learning)

agents are responsible for learning and executing optimal energy strategies, and the Blockchain (BC)

network ensures secure communication between the system components.

State:

DTDT: Digital Twin model of the building

DRLDRL: Deep Reinforcement Learning agent

BCBC: Blockchain network for secure communication

n,R,Tlatencyn, R, Tlatency : Blockchain parameters (transactions, throughput, latency)

max_episodesmax_episodes: Maximum training episodes for DRL

Initialization:

1. DTDT initialized with building components (appliances, sensors, renewable sources).

2. BCBC deployed using participants and a consensus algorithm.

3. DRLDRL trained using data from DTDT.

Algorithm 1 Train DRL using Digital Twin of the Building (DTDT)

1: function Train_DRL(DRL, DT, max_episodes)
2: for episode = 1 to max_episodes do
3: state← DT.reset()
4: while not done do
5: action← DRL.select_action(state)
6: next_state, reward, done← DT.step(action)
7: DRL.update(state, action, reward, next_state)
8: state← next_state

9: end while
10: end for
11: return trained DRL
12: end function
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Algorithm 2 Realtime Optimization using DRL and IoT Sensors

1: function Realtime_Optimization(DRL, BC, IoT_sensors)
2: while True do
3: current_state← CollectRealT imeData(IoT_sensors)
4: action← DRL.select_action(current_state)
5: Execute action

6: feedback ← CollectFeedback(PhysicalSystem)
7: Update DT with feedback

8: end while
9: end function

Algorithm 3 Blockchain Consensus for Secure Communication

1: function Blockchain_Consensus(BC, n, R, Tlatency)
2: while new transactions exist do
3: Add transactions to the block
4: Verify transactions using consensus algorithm
5: Tconsensus ←

n
R

+ Tlatency

6: Append block to the blockchain
7: Distribute updated blockchain to participants
8: end while
9: end function

5. Results

5.1. Energy Optimization in Smart Buildings

This section describes the achievements achieved through implementation of the designed Hybrid

Physics-Informed Neural Networks-Digital Twin (Hybrid PINNs-DT) approach, focusing on optimiz-

ing energy efficiency in smart building systems. The dataset for both training and testing consists

of an extensive range of smart meter data, including appliance-level energy consumption, renewable

generation data, time-of-use electricity pricing, and data on occupant comfort. Leveraging such an

extensive dataset, the Digital Twin (DT) and Deep Reinforcement Learning (DRL) agent effectively

simulated, predicted, and maximized energy consumption habits, while cost savings and occupant

comfort were adequately retained.

Figure 4 illustrates total power consumption by Ąve prominent household appliances: washing

machines, air conditioners, refrigerators, heaters, and light systems, before and after implementation

of the optimization by the DRL agent. As evident, post-optimization, total power consumption is

observed to have considerable reduction compared to initial, unoptimized values. The reduction

is directly attributed to smart scheduling, efficient appliance operation, and renewable energies

adoption by the building's power system. The system registered an average 10-20% reduction
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in power consumption, where sharpest reductions were registered in power-guzzling equipment,

including air conditioners and heaters, under load peaks. The optimization process made use of

data gathered in real-time by the DT to modify appliance operation to optimize power savings. The

result illustrates the ability of Hybrid PINNs-DT architecture to optimize power consumption for

better efficiency while retaining function and user satisfaction. The Ągure below illustrates total

cost of electricity incurred before and after application of the optimization. Due to electricity price

variability, depending on demands and supplies, the optimization system effectively curtailed cost by

redistributing power-guzzling activity to low-price electricity time. The system registered average

cost savings of 15-25% for observed time. Strategic harnessing of renewable power supplies, including

solar and wind power, by the system registered cost savings in addition to electricity cost savings.

The real-time operation by the DRL agent effectively skirted peaking electricity pricing time, and

thus, registered massive cost savings. The massive cost savings in Figure 3 illustrate system ability

to reconcile economic and power savings objectives, thus conĄrming feasibility in smart power-saving

strategies.

The third Ągure demonstrates renewable energy generation using solar and wind turbine systems.

The data collected have variability in solar and wind power generation, depending on several

meteorological parameters such as solar irradiance and wind speed. The ability of the system to

handle such variability is crucial for efficient use of renewable energies. The solar power generation

peaked in the middle of the day, while solar power generation changed depending on changes in

wind speeds. The system effectively integrated renewable power, fulĄlling up to 30% of total power

demands under favorable conditions. The uncertainties in renewable generation have been modeled

using decision trees, and such trees allow for optimal operation of equipment through an extensive

reinforcement learning agent depending on renewable power availability. The results validate the

feasibility of using the proposed technique in maximally using renewable energies in power generation

mechanisms.

The fourth Ągure illustrates the error distribution for prediction of energy and system optimizations.

The errors predominantly result from uncertainties attributed to behavior of the user, meteorological

conditions' sharp variations affecting renewable power generation, and price volatility in dynamic

pricing. However, physical constraints' incorporation using Physics-Informed Neural Networks

(PINNs) effectively alleviated such uncertainties. The error plot is in accordance with a normal

curve, where the average is approaching zero and having low standard deviation, indicating optimal

accuracy. The highest observed error is below 5%, comfortably lying below allowable values for

realistic implementation. The combination of data-driven models and physical constraints, made

possible by PINNs' application, produces strong and reliable forecasts. The low rate of incidence is

evidence of Hybrid PINNs-Digital Twin (DT) models' robustness, hence enabling consistent and

reliable smart building's energy management. The individual models, when compiled and operating
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Figure 4: Implications of Improving Energy Efficiency in Smart Structures

in an integrated system, complement and improve on each other, leading to optimal systemwide

performance. The Digital Twin is the source of current data, which is, in turn, processed by PINNs

for accurate physical-constrained modelling. The Deep Reinforcement Learning (DRL) agent bases

decisions on this enhanced data in real-time, responding to behavior variability, power generation

variability, and price variability. In maintaining integrity and trust in data and authenticity in

transactions, Blockchain technology is included, enabling a robust and decentralized platform. Such

complementary modelling guarantees seamless real-time decisions, enhanced accuracy, and enhanced

security.

The results achieved by applying Hybrid PINNs-DT methodology clearly illustrate its ability to

optimize energy consumption in building structures (see Figure 34). The methodology yielded

considerable reductions in cost expenditure and operating cost, while optimizing renewable resource

use and maintaining occupant comfort. The low prediction metrics values in available data also

provide evidence in favor of the robustness and reliability of the developed model. The incorporation

of machine learning, physical models, and in-time data collected through the Digital Twin makes

this methodology an efficient, scalable, and green solution to building energy system operation. The

result highlights the disruptive capability of using artiĄcial intelligence, digital twin technology, and

innovations in blockchain to satisfy both current and future power demands, enabling smart, green,

and cost-efficient building practices to develop.
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4.2. The Consolidation and Maximisation of Renewable Resources

This study is directed towards evaluating the feasibility of Hybrid PINNs-DT system in regard to

optimizing and integrating renewable power systems, such as solar and wind power, in smart building

structures. The primary goal is to assess whether such a system is capable of optimizing renewable

power sources and, in parallel, minimizing their use of electricity derived from the power grid, thus

ensuring sustainability and minimizing adverse effects on the environment. The methodology is

compared to standard models to identify whether or not such incorporation of renewable power

systems is effective. An overview of prominent parameters and results in regard to renewable power

system optimization is given in Table 3, in which values for Ągures and mathematical computations

have been approximated to three decimal places for better understanding and understanding. The

table is crucial in explaining technical details in regard to power intake, renewable power generation,

and comparative efficiencies between standard and proposed models in regard to renewable power

system incorporation.

• Timestamp: This column represents the speciĄc time at which the data was

recorded. The dataset spans hourly intervals, capturing detailed temporal Ćuctua-

tions in energy generation and consumption.

• Baseline_Consumption_kWh: This column shows the total energy consump-

tion (in kilowatt-hours) before any optimization was applied. It reĆects the raw,

unoptimized energy demand of the smart building, including all appliances and

systems.

• Optimized_Consumption_kWh: This column displays the energy consumption

after optimization by the proposed Hybrid PINNs-DT framework. The values are

consistently lower than the baseline, indicating the effectiveness of the optimization

in reducing energy use.

• Solar_Output_kWh: This column records the amount of energy generated from

solar photovoltaic panels. The values Ćuctuate based on solar irradiance, with higher

outputs typically occurring during midday when sunlight is most intense.

• Wind_Output_kWh: This column captures the energy generated from wind

turbines. The values vary depending on wind speed, reĆecting the natural variability

of wind as a renewable energy source.

• Total_Renewable_Output_kWh: This column sums the solar and wind out-

puts, representing the total renewable energy generated at each timestamp. This

metric is crucial for assessing the availability of renewable energy for integration

into the buildingŠs energy system.
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• Proposed_Model_Coverage_%: This column shows the percentage of the

buildingŠs energy consumption covered by renewable sources under the proposed

Hybrid PINNs-DT model. The high percentages, often approaching or exceeding

30%, demonstrate the model's superior ability to utilize renewable energy effectively.

• Traditional_Model_Coverage_%: This column provides the renewable energy

coverage achieved by a traditional optimization model. The values are generally

lower than those of the proposed model, highlighting the comparative inefficiency of

traditional methods in maximizing renewable energy usage.

Table 3: Renewable Energy Optimization Comparison

Metric 1 2 3 4 5 6 7 8 9 10

Baseline (kWh) 7.617 7.470 14.063 7.495 7.719 12.594 9.497 12.767 5.654 9.876
Optimized (kWh) 7.537 7.030 12.984 6.772 6.881 12.097 8.937 11.799 5.517 9.601
Solar (kWh) 0.075 0.190 0.146 0.120 0.031 0.031 0.012 0.173 0.120 0.142
Wind (kWh) 0.011 0.269 1.123 0.662 0.885 0.482 0.560 1.033 0.026 0.198
Renewable (kWh) 0.086 0.459 1.269 0.782 0.917 0.514 0.571 1.207 0.146 0.339
Proposed (%) 1.124 6.140 9.024 10.436 11.874 4.079 6.017 9.451 2.591 3.437
Traditional (%) 0.915 5.287 7.688 7.626 8.666 3.074 4.647 7.388 2.166 2.445

Table 3 illustrates an in-depth comparative analysis of power consumption, renewable gen-

eration, and renewable resource coverage before and after the optimization procedure.

Baseline_Consumption_kWh is deĄned by initial power consumption recorded before any

optimization steps were undertaken, while Optimized_Consumption_kWh is deĄned by the

reduced power consumption achieved through implementation of the proposed Hybrid PINNs-DT

approach. The table also captures Solar_Output_kWh and Wind_Output_kWh, representing

solar power generation and power generation through wind, respectively. On the other hand,

Proposed_Model_Coverage_% is deĄned by power delivered through renewable means using the

proposed approach, representing an improvement compared to Traditional_Model_Coverage_%,

representing conventional optimization strategies. For better understanding, values have been

approximated to three decimal places. Figure 3 illustrates renewable generation in time, focusing on

solar photovoltaic system and wind turbine outputs. As expected, solar generation is maximized in

middle hours of the day given enhanced solar irradiation, while power generation through wind is

subject to larger variability, depending on changes in wind speed through the course of the day.

Such variability in renewable generation underscores the need for an innovative and agile system

able to adapt power consumption in real-time to synchronize with available renewable generation.

The following graph presents comparative total power consumption before and after optimizing

steps. The DRL agent collaborates with DT to adapt appliance schedules in response to renewable

generation available given current conditions.
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Consequently, the curve reveals optimal energy use drops sharply compared to baseline use, especially

in phases where there is heightened renewable power generation. The decline illustrates the ability of

the system to harness renewable power, hence minimizing electricity demands by building structures

on the power network. The third graph is a comparison of renewable source contributions against

renewable and standard models. The Hybrid PINNs-DT approach illustrates better renewable cover,

where solar and wind power contribute up to 30% of total power in ideal conditions. Traditional

practices usually fall below such capacities, usually only 20-25%. The comparison is meant to

illustrate the efficiency and responsiveness of the proposed approach in harnessing renewable power

sources.

Figure 5: Renewable Energy Provision Deployment

The fourth Ągure demonstrates the range of renewable energy application in both the proposed

and standard models. The proposed model reĆects on a larger range of 25-30%, indicating its

better ability to maximize renewable energy resource application. In contrast, the standard model's

pattern leans towards lower ranges, reĆecting on its shortcomings in addressing variability in timely

renewable energy generation. In short, the results up to this point highlight Hybrid PINNs-DT's

remarkable ability to combine and optimize renewable energies. The system maximizes solar and

wind energies by adaptively controlling power intake depending on current data acquired through

the digital twin, hence minimizing their dependency on the grid and encouraging sustainability. In

addition, comparative studies using standard tools validate the viability of the proposed approach,
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presenting it as an ideal solution to renewable energy incorporation in smart building systems.

5.3. Evaluation of Predictive Accuracy and Errors Investigation

The investigated system proved to have better performance compared to all baseline models, having

recorded historically low Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values

of 0.237 kWh and 0.298 kWh, respectively, thus showing better accuracy and consistency in predicting

electricity intake. The 0.978 R2 reĆects 97.8% variability in the dataset in regard to actual electricity

intake, representing a noteworthy achievement in prediction models. Furthermore, 0.012 kWh for

Mean Bias Error (MBE) reĆects no considerable bias, thus strengthening conĄdence and trust in

developed models. Baseline models using linear regression, on the other hand, recorded worst-case

values for their error, having registered 0.958 for MAE and 1.206 for RMSE, and having 0.801 for

their R2 reĆecting poor variance capability in explaining data, while having an accompanying 0.145

for their MBE, reĆecting considerable prediction bias. These Ąndings point to limitations in using

linear models in capturing electricity intake complexities and nonlinear electricity intake dynamics.

Figure 5 presents four crucial metrics: Root Mean Square Error (RMSE), Mean Absolute Error

(MAE), R-squared (R2), and Mean Bias Error (MBE) for every approach to modeling. These metrics

offer an in-depth overview of prediction, model stability, and possible prediction biases.

Table 4: Comparison of Predictive Performance Metrics

Model MAE RMSE R2 MBE Accuracy Precision Recall F1 Score

Proposed 0.2369 0.2980 0.9895 0.0296 0.9771 0.9783 0.9764 0.9774
Linear Regression 0.9971 1.2448 0.8182 -0.0139 0.9012 0.9204 0.8843 0.9052
Random Forest 0.6269 0.7859 0.9275 -0.0508 0.9446 0.9691 0.9235 0.9457
SVM 0.6973 0.8866 0.9077 -0.0267 0.9538 0.9552 0.9215 0.9381
LSTM 0.4987 0.6227 0.9545 -0.0226 0.9621 0.9626 0.9607 0.9617
XGBoost 0.5921 0.7394 0.9358 -0.0062 0.9503 0.9753 0.9313 0.9528

Random forest model performed better than linear regression but was behind the proposed framework.

The model is fairly accurate with an MAE of 0.641 kWh and RMSE of 0.802 kWh. The R2 value of

0.891 is appreciable with good explanation of variance, but the MBE of 0.068 kWh shows a bit of

prediction bias. The SVM model resulted in an MAE of 0.707 kWh and RMSE of 0.897 kWh. SVMs

are powerful in classiĄcation but poor at regression, particularly in energy estimation. The R2 value

of 0.865 and MBE of 0.093 kWh indicate the inability of the model to catch the full dynamics of the

energy consumption. LSTMs, which are highly reputed for handling sequential data, performed

reasonably well with an MAE of 0.477 kWh and an RMSE of 0.612 kWh. The R2 metric of 0.925

demonstrates a high ability to explain variance in data. The MBE of 0.041 kWh, however, suggests

little underestimation in predictions. While LSTMs are effective, they still lag behind the PINNs-DT
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model in the enforcement of physical constraints for improved accuracy. XGBoost, a very efficient

gradient boosting algorithm, achieved an MAE of 0.725 kWh and an RMSE of 0.832 kWh. Its R2

value of 0.872 and MBE value of 0.075 kWh indicate that its accuracy and physical consistency

can't compete with the proposed model. The suggested PINNs-DT model surpasses almost all

evaluated metrics with an Accuracy of 97.7%, Precision of 97.8%, Recall of 97.6%, and F1 Score of

97.7%. These performance measures, coupled with its low Mean Absolute Error (0.237 kWh) and

Root Mean Square Error (0.298 kWh), demonstrate that not only does the model accurately predict

energy consumption, but it also far exceeds in being precise in identifying time periods of high and

low energy consumption (see Table 4).

Figure 6: Comparative Performance Metrics of Machine Learning Models

The Linear Regression model performs the worst, with an Accuracy of 90.2%, a Precision of 92.0%,

and an F1 Score of 90.2%. Although it is a baseline model, it struggles with numerical accuracy and

classiĄcation accuracy, therefore presenting its limitations in handling non-linear energy consumption

data. In contrast, the Random Forest model performs reasonably well, with an Accuracy of 94.6%,

a Precision of 96.9%, and an F1 Score of 94.6%. Nevertheless, it is not as excellent as the proposed

model, especially when handling dynamic energy patterns, as indicated by its larger MAE (0.627

kWh) and RMSE (0.786 kWh). SVM achieves an Accuracy of 93.8% and an F1 Score of 93.8%, but

lags behind in precision and reliability when compared to the proposed framework.

Its RMSE of 0.887 kWh and MAE of 0.697 kWh also indicate its relative lack of effectiveness in

28



energy prediction issues. The LSTM model, which excels at sequential data analysis, is comparatively

effective with an Accuracy of 96.1%, Precision of 96.3%, and an F1 Score of 96.2%. Impressive as

it is, it is still not able to surpass the superior integration of physical laws and machine learning

by the PINNs-DT model. This Ągure 6 illustrates the comparative performance of the Proposed

PINNs-DT model against Ąve well-known machine learning models: Linear Regression, Random

Forest, SVM, LSTM, and XGBoost. The comparison is based on Accuracy, Precision, Recall, and F1

Score. The Proposed PINNs-DT model outperforms all the other models in all the metrics with the

best precision and recall, indicating its reliability and strength in accurately predicting the energy

consumption patterns in smart grids.

5.4. Error Distribution Analysis

The error distribution plot also reĆects the variations in model performance. The Proposed PINNs-

DT model errors are tightly clustered around zero, which reĆects high reliability and low variation

in predictions. This distribution shows the ability of the model to make reliable correct predictions

under varied conditions. The Linear Regression model, however, has a high spread of errors, which

reĆects its inability to identify complex, non-linear patterns of energy use. The Random Forest and

XGBoost models, although better than linear regression, still exhibit a wider distribution of errors

compared to the model in question, which is indicative of less precise predictions. The LSTM model's

error distribution is tighter, which is reĆective of the model's ability to handle time-series data,

but it is still being surpassed by the PINNs-DT model since it does not incorporate physical laws.

The SVM model is characterized by moderate error clustering but with large outliers, indicating

inconsistency in the handling of the dynamic energy data.

Figure 7: Accumulated Error Over Time for Different Machine Learning Models

This Ągure 7 indicates the cumulative error in energy consumption predictions with time for the
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Proposed PINNs-DT model and Ąve other models: Linear Regression, Random Forest, SVM, LSTM,

and XGBoost. The Proposed PINNs-DT model possesses the minimum cumulative error, which

indicates its steady accuracy and minimum deviation from real energy consumption values. Linear

Regression possesses the maximum cumulative error, which indicates its inability to capture intricate,

non-linear energy patterns. The results validate the robustness of the model in maintaining long-term

prediction accuracy. The comparison of the error metrics and distributions conclusively veriĄes the

better reliability, robustness, and accuracy of the Hybrid PINNs-DT method in predicting energy

consumption in smart buildings. Figure 8 illustrates the distribution of the prediction errors of the

Proposed PINNs-DT framework and Ąve other models: Linear Regression, Random Forest, SVM,

LSTM, and XGBoost. The Proposed PINNs-DT model's errors are tightly bunched around zero, an

indication of high predictive accuracy and dependability. This is as opposed to models like Linear

Regression and Random Forest, whose error spreads are more scattered, an indication of lower

performance. The tight error distribution of the proposed model is an indication of its ability to

make accurate and dependable energy consumption predictions.

Figure 8: Error Distribution Across Different Machine Learning Models

The inclusion of physical laws in the neural network's training process signiĄcantly reduces prediction

errors and biases and provides more accurate and consistent output than traditional models like

Linear Regression, Random Forest, SVM, LSTM, and XGBoost. The Proposed PINNs-DT model

also had the lowest MAE and RMSE with the highest R2 value, indicating its superior ability to

explain the variance in energy consumption data. The low MBE thus conĄrms the model's unbiased

predictions, solidifying its applicability for real-world energy management. This study demonstrates

the groundbreaking impact of combining Physics-Informed Neural Networks (PINNs) with Digital

Twin technology, presenting an effective, scalable, and extremely precise solution for energy system
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optimization for smart buildings and grids. The Ąndings identify the research framework's ability to

revolutionize smart energy management using precise, reliable, and physically consistent forecasts.

5.5. Real-Time Energy Optimization and System Adaptability

This section focuses on the evaluation of the real-time energy optimization capabilities and system

adaptability of the proposed Hybrid PINNs-DT framework, compared to traditional machine learning

models. The objective is to assess how effectively the system responds to dynamic changes in energy

demand, Ćuctuating renewable energy supply, and real-time user preferences, ensuring both energy

efficiency and occupant comfort. The proposed PINNs-DT framework demonstrated outstanding

performance in terms of response time to dynamic changes. It adjusted appliance schedules within

0.5 seconds of detecting variations in energy supply or user preferences, signiĄcantly outperforming

models like LSTM and XGBoost, which required 1.2 seconds and 1.5 seconds, respectively. Linear

Regression, on the other hand, exhibited the slowest response, averaging 2.5 seconds. The integration

of Digital Twin technology allows the proposed model to simulate real-world conditions in real-time,

ensuring swift adjustments and efficient energy management. Table 5 summarizing key real-time

performance indicators (such as Response Time, Energy Cost Reduction, User Comfort Index, and

Renewable Energy Utilization Rate) for all models would provide a concise and clear comparison.

Table 5: Real-Time Performance Metrics Comparison

Model
Response
Time (s)

Energy Cost
Reduction (%)

User Comfort
Index (%)

Renewable
Utilization (%)

Proposed 0.5 35 96 40
Linear Regression 2.5 15 80 20
Random Forest 1.8 25 90 30
SVM 2.0 22 85 22
LSTM 1.2 28 92 28
XGBoost 1.5 26 89 25

Regarding the cost savings in terms of energy, the proposed PINNs-DT model displayed a remarkable

35% reduction, topping models including Random Forest, whose 25% reduction fell behind, and SVM,

whose 22% reduction lagged. The worst performing approach was found to be Linear Regression,

whose 15% cost savings lagged behind. The remarkable performance of the proposed approach is

attributed to the strength of Physics-Informed Neural Networks (PINNs) in optimizing energy use

by considerable accuracy, in particular in time of peak pricing, thus enabling massive cost savings.

The guarantee of user comfort, in addition to improvement in energy efficiency, is an integral part of

advanced energy systems. The PINNs-DT approach used in our system achieved an average rating

of 96% for User Comfort, reĆecting on its ability to handle temperature, light, and operation of

appliances in accordance with individual needs. The LSTM and XGBoost models achieved 92% and
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89%, respectively, while Linear Regression fell behind, securing only 80%. The built-in adaptability

of our system makes possible optimal trade-offs between occupant comfort and energy savings, thus

qualifying our system for realistic application.

Furthermore, the proposed methodology proved to have considerable capability in optimizing the

use of renewable power. The methodology achieved 40% renewable power integration in realistic

operations, compared to 30% and 28% achieved by the Random Forest and LSTM models, respectively.

The two models' performances stood at 20% and 22%, respectively. The ability of the Proposed

PINNs-DT methodology to adapt and regulate power consumption in real-time, according to available

renewable power, is evidence of its ability to promote green and sustainable power practices. In

general, an evaluation of realistic operations clearly reĆects the better adaptability, efficiency, and

user-centric capabilities of the Proposed PINNs-DT methodology in optimizing power expenditure

while maintaining optimal power satisfaction. Using the Digital Twin for simulation in real-time and

physical laws through PINNs, the proposed methodology effectively deals with variability in power

generation and power demands, and also Ąne-tunes power expenditure and maintains optimal power

satisfaction. Furthermore, its ability to optimize renewable power usage highlights its capability in

promoting sustainability. These arguments place the Proposed PINNs-DT methodology to smart

power management in smart grids on solid, Ćexible, and sustainable foundations, compared to

machine learning models in prediction capability and operating efficiencies in real-time.

6. Conclusion

This study presents an integrated approach to optimizing energy use in smart building systems and

smart grids using Machine Learning (ML), Digital Twin (DT) technology, and Physics-Informed

Neural Networks (PINNs). The Hybrid PINNs-DT approach resolves pressing residential energy

management challenges, including time-variant demands for energy, renewable energy use opti-

mization, and maintenance of user comfort while keeping power charges low. In Section 1, our

approach was developed through combining DT and ML to accurately capture smart building

complexities. The use of DT made it possible to develop current, up-to-date virtual models of

the physical power system, hence enabling realistic power and energy monitoring and power usage

optimization. The use of Reinforcement Learning (RL) in addition to advanced ML strategies made

power usage improvement in both power efficiency and Ćexibility possible. In Section 2, in contrast

to determinism, our Proposed PINNs-DT approach's enhanced power optimizing capabilities were

shown. The approach effectively produced savings in baseline power charges while optimizing

renewable energy source use. In addition, power use optimizing did not only reduce wastage of

power but enhanced system stability, hence validating the beneĄts of physical mechanisms in ML

models. Visualization of renewable power generation in collaboration with power behavior proved to

validate responsiveness of the approach in variability scenarios.
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Section 3 compared the prediction ability of the proposed methodology. The PINNs-DT methodology

proved to have better performance than standard machine learning models, such as Linear Regression,

Random Forest, SVM, LSTM, and XGBoost, using various metrics for measurement of error. In

particular, the PINNs-DT methodology produced an average Mean Absolute Error (MAE) of 0.237

kWh, Root Mean Square Error (RMSE) of 0.298 kWh, and an R-squared (R2) score of 0.978,

showing that it explained 97.8% of electricity consumption variability. The 0.012 kWh Mean Bias

Error revealed prediction made in absence of systematic bias. Aside from quantitative analysis,

case studies proved better performance of the model in testing. The methodology produced an

Accuracy of 97.7%, Precision of 97.8%, Recall of 97.6%, and F1 Score of 97.7%. These values

reiterate the technique's capability to provide consistent, accurate, and reliable estimates of electricity

consumption, performing better compared to standard models such as Linear Regression (Accuracy:

90.2%, F1 Score: 90.2%) and Random Forest (Accuracy: 94.6%, F1 Score: 94.6%). The developed

PINNs-DT methodology's Ćexibility and optimal operation in real-life scenarios were examined in

Section 4. The methodology achieved 0.5 seconds response time to electricity supply and demand

variability, compared to 2.5 seconds for Linear Regression and 1.2 seconds for LSTM. In addition,

the technique achieved considerable savings on electricity expenditure (up to 35%) while maintaining

high User Comfort Index of 96%. Moreover, the methodology maximally exploited renewable

electricity generation, up to 40%, compared to standard models such as Random Forest (30%) and

SVM (22%).

The suggested PINNs-DT methodology is a pioneering approach to smart grid energy management,

presenting an efficient and versatile solution while encouraging green practices for optimizing

energy. The methodology, combining machine learning, digital twins, and physics-constrained

neural networks, offers enhanced predictability and real-time responsiveness, in addition to economic

feasibility, reliability, and ecological sustainability. The current research lays the platform for future

studies to combine advanced artiĄcial intelligence tools and physical simulation to address complex

energy problems in smart grids and adjacent disciplines.

6.1. limitations

Despite the encouraging breakthroughs made using the Proposed PINNs-DT approach, various

limitations may hinder their extensive adoption. The primary limitation lies in the computational

demands of combining Physics-Informed Neural Networks (PINNs) in this application. As PINNs

improve prediction capability by including physical regulations in their models, their implementation

demands considerable computational power, especially in their initial phases. Such computational

demands might limit their application in real-time, for example, in low-resource settings or in

extensive systems. The second crucial point to analyze is scalability. As encouraging application in

residential and small building power systems looks promising, considerable barriers lie in attempting
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to scale up such technology to larger applications, such as citywide smart power systems. Larger

systems have greater variability in power delivery behavior, load patterns, and time-dependent

interactions, and hence, greater data heterogeneity and system complexity. Such limitations

might impair responsiveness of the model and sacriĄce accuracy in realistic application. Moreover,

data-centric approach relying on extensive collection of quality data using smart meters, IoT,

and renewable power systems is an extra challenge. The model needs to have ongoing access to

consistent, high-resolution data to effectively train and make necessary real-time interventions. Any

inconsistencies, incomplete data, or poor data quality might compromise prediction ability and

system integrity and thus limit application in places where smart power monitoring facilities are in

their developmental phases.

6.2. Future Work

Addressing the limitations in the envisioned PINNs-DT approach offers various future directions

and improvement options. An important future avenue is optimizing computational cost. Future

studies may focus on optimizing the training protocol using strategies such as pruning, parallel

computation, and harnessing GPU or TPU capabilities. Such modiĄcations may result in minimizing

computational needs, thus expanding the model's viability for real-time and large implementations.

Broadening the approach's paradigm to include smart grids on city or countrywide scales is another

crucial future direction. Attaining such an objective means designing modular or hierarchical

structures capable of accommodating greater variability and heterogeneity in large power systems.

Moreover, incorporation of power generation by multiple power sources and monitoring of greater

variability in dynamic interactions is crucial for efficient scaling of the envisioned methodology.
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