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Abstract—With the development of blockchain technology,
more and more attention has been paid to the intersection
of blockchain and education, and various educational evalua-
tion systems and E-learning systems are developed based on
blockchain technology. Among them, Ethereum smart contract
is favored by developers for its “event-triggered” mechanism
for building education intelligent trading systems and intelli-
gent learning platforms. However, due to the immutability of
blockchain, published smart contracts cannot be modified, so
problematic contracts cannot be fixed by modifying the code in
the educational blockchain. In recent years, security incidents
due to smart contract vulnerabilities have caused huge property
losses, so the detection of smart contract vulnerabilities in
educational blockchain has become a great challenge. To solve
this problem, this paper proposes a graph neural network (GNN)
based vulnerability detection for smart contracts in educational
blockchains. Firstly, the bytecodes are decompiled to get the
opcode. Secondly, the basic blocks are divided, and the edges
between the basic blocks according to the opcode execution logic
are added. Then, the control flow graphs (CFG) are built. Finally,
we designed a GNN-based model for vulnerability detection. The
experimental results show that the proposed method is effective
for the vulnerability detection of smart contracts. Compared with
the traditional approaches, it can get good results with fewer
layers of the GCN model, which shows that the contract bytecode
and GCN model are efficient in vulnerability detection.

Index Terms—educational blockchain, smart contract, byte-
code, vulnerability detection

I. INTRODUCTION

The education blockchain refers to the use of blockchain as

technical support when carrying out reforms to the traditional

education systems [1], [2]. The white paper on blockchain

technology released by China in 2016 states that “the trans-

parency and immutability of the blockchain system are per-

fectly suitable for student credit management, further educa-

tion and employment, academics, qualification certification,

and industry-academia cooperation, and are of great value

to the healthy development of education and employment”

Corresponding author: Zhifeng Wang, Email: zfwang@ccnu.edu.cn

[3]. According to the visual analysis of the blockchain in

education [4]–[6], blockchain technology is using its decen-

tralized feature to break the absolute management power

of traditional education administrators over education and

promote the development of education in the direction of more

equity [7], [8]. With the creation and development of Ethernet

smart contract technology, programs can be implemented to

automatically execute without third-party intervention after

meeting the conditions to achieve functions such as controlling

the assets of the blockchain and storing data information.

By embedding smart contracts, blockchain technology can

build virtual economy education intelligent transaction systems

[9], which can promote the construction of a new system

combining the Internet and education, avoid the limitations of

the traditional education model in space and time to a certain

extent, and help promote the change of the education system

and accelerate its development.

Blockchain-based smart contract systems have many advan-

tages, such as ensuring the authenticity [10] and security of

information [11], [12], saving human resources, improving the

efficiency of program execution, etc. However, smart contracts

are not absolutely secure. Different security vulnerabilities

may exist throughout the life cycle of a smart contract, and due

to the published code cannot be modified, the security prob-

lems caused by smart contract vulnerabilities will increase, so

it is especially important to improve its security.

For example, the main detection in this paper is a timestamp

dependency vulnerability. Smart contracts use timestamps to

control certain important block control flow decisions, and if

an attacker masquerades as a miner, they can bypass certain

operations in the contract that are restricted by timestamps by

maliciously controlling the range of timestamp generation.

With the continuous development of deep learning tech-

niques, some scholars have proposed the use of these tech-

niques for vulnerability detection to make it more accurate,

comprehensive, and efficient. This paper uses Control Flow
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Graph (CFG) built based on bytecode files of smart contracts,

use it as the input of a graph neural network, and builds

a Graph Convolutional Network (GCN) model to realize

vulnerability detection of smart contracts. The contributions

of this paper can be summarized as follows:

• A GCN model is built and successfully predicts contract

vulnerabilities for the educational blockchain.

• The vulnerabilities can be effectively detected through the

bytecode files of smart contracts.

• The accuracy of model prediction can be increased if

semantic processing is added or classification of edges is

added.

The rest of the paper is organized as follows. In Section

2, we review the related work. In Section 3, we introduce the

main research methods, including CFG composition and GCN

model. In Section 4, we describe the details of the experiment

and the results. Finally, we have a summary of this work in

Section 5.

II. RELATED WORK

We first introduce the contractual vulnerability detection

methods that are now available. Then we summarize the

development of graph convolutional neural networks.

A. Contract Vulnerability Detection Methods

In response to the security problems caused by smart

contracts, numerous research teams at home and abroad have

proposed solutions that seek to protect users’ property security

and data security. The current detection techniques mainly

include two types, one is based on non-deep learning methods

and the other is based on deep learning methods.

A non-deep learning-based method, the automated contract

vulnerability mining tool Oyente [13], is a symbolic execution-

based analysis method. Using the bytecode file of a smart

contract as input, after analyzing the bytecode and constructing

the CFG, the Z3 solver is used to analyze the conditional

jumps in the contract, which can predict whether there are

seven types of vulnerabilities such as integer overflow errors

and reentrant vulnerabilities for that contract.

Another non-deep learning-based approach, ContractFuzzer,

is a fuzzy test-based detection tool. It consists of two parts,

an offline EVM staking tool and an online fuzzy testing tool

[14]. The tool generates legally valid inputs and mutated inputs

that cross the valid boundary by analyzing the bytecode of the

smart contract as well as the ABI interface; after starting the

fuzzy test, the detection results of the contract can be obtained

through the execution log.

A deep learning-based approach uses RNN networks. an

RNN is a recurrent neural network that uses sequence data

as input to a neural network, recursively in the direction of

sequence data and with all recurrent units connected in a

chain-like manner [15]. In the RNN network model proposed

in the literature [16], two layers of threshold recursive units

(GRUs) are connected after the embedding layer, and the

fully connected layer is connected afterward. This experiment

demonstrates that vulnerability detection can be done using

smart contract operation sequences combined with deep learn-

ing networks.

Another deep learning-based method can use the Long

Short-Term Memory Network (LSTM) [17], a model that

constructs three gates: input, output, and forgetting gates,

implementing an optimization of the RNN and therefore

providing further performance improvements. The use of this

network model for vulnerability detection is proposed in the

literature [18], using a binary vector encoding representing the

opcode of a smart contract as an input to the network model,

and its experimental results show more effective detection

results in contrast to non-deep learning methods.

B. Graph Convolutional Network Model

The graph neural network model used in this paper is the

GCN. It is a model evolved from Spectral CNN and Chebyshev

Network (ChebNet) [19]. The important architecture of GCN

includes a graph convolution layer, a graph readout layer, and

a graph regularization layer to improve model generalization

performance and a graph pooling layer to reduce the number

of computational parameters. The GCN model is essentially

the same as a Convolutional Neural Network (CNN) [20], i.e.,

it aggregates pro-domain information for operation, but the

difference is that the GCN model applies to data with a non-

Euclidean structure.

Because the GCN network deals with graph structures, it

needs to be represented as multiple files during data pre-

processing, such as adjacency matrix, number of nodes and

information, number of edges and information, etc.

Since its introduction, the GCN network model has received

a lot of attention from scholars from all walks of life and has

been actively applied to various application sites of graph data.

Currently, the GCN network model has been applied to the

blockchain, biochemistry, traffic prediction, computer vision,

and other fields with promising results [21].

III. PROPOSED METHOD

Smart contracts are run by EVM, which first compiles the

source code into bytecode and then runs it as bytecode, so

it is more realistic to use bytecode files as the basis for

vulnerability detection.

Inspired by the success of deep learning in the fields of

data mining [2], [22]–[25], computer vision [6], [8], [17], [20],

[21], [26]–[33] and speech processing [10], [12], [15], [34]–

[42], this paper proposes a method based on deep learning

for smart contract vulnerability detection. We decompile the

bytecode file of a smart contract to get the opcode, divide

several basic blocks according to the instruction semantics and

construct a control flow graph CFG according to the jump

order. Then we build a GCN model including an input layer,

several hidden layers, and an output layer structure, and then

input data and test it. The overall experimental framework is

shown in Fig. 1.

The process can be divided into the following main steps.

1) Analyze smart contract bytecode files and generate de-

compiled code;



6080604052……

0x0: PUSH1 0x80
0x2: PUSH1 0x40
0x4: MSTORE
……

……

Bytecode

Decompiling code Basic blocks CFG Graph Structure

Vulnerability ? (1 or 0)

Adjacency matrix

……

Node attribute matrix

Input

1 ~ 4 Hidden layers 

Output

Fig. 1. A description of the experimental procedure. The first part is the process of constructing CFG, and the second part is the process of constructing
GCN model and inputting data for vulnerability prediction.

2) Divide the basic blocks, add dependent edges to the

basic blocks to build CFG, and use them as input to

the GCN;

3) Define the convolutional network layer of GCN;

4) Add pooling layer, fully connected layer, etc. to build a

complete GCN model.

A. Byte Code Analysis

1) Contract Bytecode Structure: The source code of a smart

contract is compiled to generate bytecode, which is divided

into three parts: deployment code, runtime code, and auxdata.

When EVM builds a contract, it first creates the contract user,

then runs the deployment code and deposits the two parts,

runtime code and auxdata, onto the blockchain, and in the

actual operation of the contract, it is the runtime code that

runs; the last 43 bytes of each contract are auxdata, which will

be saved following the runtime code. An example of bytecode

structure is given below as shown in Fig. 2.

6080604052348015600f67600080fd6b50603580601d6000396000f3006080604052600080fd00a16

5627a7a72305820f633121e144cae24615a160fcb484c1f949df86d7d21e9be0df2cf3b4c1f9eb0029

6080604052348015600f

67600080fd6b50603580

601d6000396000f300

6080604052600080fd00a165627

a7a72305820f633121e144cae24

615a160fcb484c1f949df86d7d2

1e9be0df2cf3b4c1f9eb0029

a165627a7a72305820f633

121e144cae24615a160fcb

484c1f949df86d7d21e9be

0df2cf3b4c1f9eb0029

Deployment code Runtime code Auxdata

The last 43 bytes of the runtime code

Fig. 2. The bytecode file of a smart contract consists of three parts:
deployment code, runtime code, and auxdata.

2) Assembly Opcode: The decompiled code can be ob-

tained by disassembling the bytecode. The decompiled code

consists of two parts: the instruction address and the instruc-

tion opcode. Since the smart contract only runs the runtime

code part when it is executed, the decompilation operation on

the bytecode only needs to operate on the runtime code part.

Up to now, EVM has used 145 opcodes, which can be

divided into arithmetic operation instructions, comparison

operation instructions, per-bit operation instructions, crypto-

graphic calculation instructions, stack, memory, and storage

operation instructions, jump instructions, block, and smart

contract related instructions, etc. according to their functions.

The specific opcodes are divided as shown in Table I.

Table I. The classification of EVM opcodes and the functions of each
category, with a few examples.

OPCODE FUNCTION EXAMPLE

0x00 - 0x0B Stopping and Arithmetic Operation ADD, SUB, STOP, DIV
0x10 - 0x1A Comparison and By-bit Logic Operations GT, LT, EQ

0x20 Encryption SHA3
0x30 - 0x3E Environmental Information ADDRESS, CALLER
0x40 - 0x45 Block Operations BLOCKHASH, COINBASE
0x50 - 0x5B Storage and Execution POP, JUMP, JUMPI
0x50 - 0x5B Push Operation PUSH1 - PUSH32
0x80 - 0x8F Copy Command DUP1 - DUP16
0x90 - 0x9F Exchange Instructions SWAP1 - SWAP16
0xA0 - 0xA4 Logging Instructions LOG0 - LOG4
0xF0 - 0xFF System Command CALL, RETURN

An example of decompiling the bytecode is given below, as

shown in Fig. 3.

6080604052600080fd00a
165627a7a72305820f6331
21e144cae24615a160fcb4
84c1f949df86d7d21e9be0
df2cf3b4c1f9eb0029

0x0: PUSH1 0x80
0x2: PUSH1 0x40
0x4: MSTORE
0x5: CALLVALUE
0x6: DUP1
0x7: ISZERO
0x8: PUSH1 0x0f
0xa: JUMPI
0xb: PUSH1 0x00
0xd: DUP1
……

Fig. 3. An example of decompiling the bytecode file of a smart contract to
get the opcode.

B. Control Flow Graph Generation

Building a CFG using the bytecode of a smart contract

involves the following main steps.

1) Disassembling the hexadecimal bytecode file to obtain

the corresponding assembly opcode.

2) Dividing the opcode into some basic blocks according

to the rules for building basic blocks.

3) Calculating the destination address of each basic block

according to transfer instructions such as jump instruc-

tions and conditional instructions, and adding edges

between the corresponding two basic blocks, thus com-

pleting the construction of the control flow graph (CFG).



4) Based on CFG, sequential dependent edges are added

between the sequentially executed basic blocks to im-

prove the graph structure.

The above section has analyzed the bytecode of the smart

contract and described how to get the opcode. The next section

describes how to build the CFG.

1) Basic Block Division: A basic block is a maximized

sequence of instructions in which the execution of an instruc-

tion can only start from the first instruction and end with the

last instruction. A code file can generate a graph structure by

dividing the basic blocks and adding jump dependencies and

sequential dependencies.

The following are three basic principles for constructing a

basic block.

1) If this instruction is the first instruction of a program or

subroutine, the current basic block should be terminated

and a new basic block should be opened with this

instruction as the first instruction in it.

2) If this instruction is a jump statement or branch state-

ment, etc., the instruction should be used as the last

instruction of the current basic block, and then the basic

block should be terminated.

3) If the instruction does not belong to the above two cases,

it is added directly to the current basic block.

An example of a bytecode file divided into basic blocks is

given below, as shown in Fig. 4.

2) CFG Structure Construction: After the work of dividing

the basic blocks is completed, it is necessary to add new edges

to the basic blocks in combination with assembly instructions,

i.e., the jumping relationships between the basic blocks. The

complete diagram structure after adding sequential edges to

the basic blocks divided in the above section is shown in Fig.

5.

C. GCN Model

1) Convolutional Layer Definition: The underlying equa-

tion of GCN is shown in equation 1.

H l+1 = σ(D̃−
1

2 ÃD̃−
1

2H lwl) (1)

where H l is the input feature of the lth layer and H l+1 is

the output feature. wl is the linear transformation matrix, i.e.,

the weight matrix that the model needs to learn, and σ(·) is

the nonlinear activation function, such as ReLU, Sigmoid, etc.

Ã is the adjacency matrix with self-connections (hereafter

referred to as the self-connected adjacency matrix), defined as

shown in equation 2.

Ã = A+ I (2)

A is the adjacency matrix and I is the unit matrix. In

the adjacency matrix, the elements at the diagonal positions

represent the relationship between the node and itself, while

the elements at the non-diagonal positions represent the re-

lationship between the node and the node. If a node is not

connected to itself, the element at the diagonal position is 0.

6080604052600436106100415
76000357c0100000000000000
0000000000000000000000000
00000000000000000900463ffff
ffff168063c0ee0b8a

……

00a165627a7a2305820238baed
668ee946b5e79a13e86a907216
e9beb7cf5b475b70e51417e895
a025a0029

0000 60 PUSH1 0x80
0002 60 PUSH1 0x40
0004 52 MSTORE
0005 60 PUSH1 0x04
0007 36 CALLDATASIZE
0008 10 LT
0009 61 PUSH2 0x0041
000C 57 *JUMPI

……

0426 23 23
0427 8B DUP12
0428 AE AE
0429 D6 D6
042A 68 PUSH9 0xee946b5e79a13e86a9
0434 07 SMOD
0435 21 21
0436 6E PUSH15 0x9beb7cf5b475b70e51417e895a025a
0446 00 *STOP
0447 29 29

0000 – 000C

Basic 
Block1

000D – 0040

Basic 
Block2

0041 – 0045

Basic 
Block3

0046 – 004D

Basic 
Block4

004E – 0051

Basic 
Block5

0052 – 00D6

Basic 
Block6

00D7 – 00D8

Basic 
Block7

00D9 – 00E0

Basic 
Block8

00E1 – 013D

Basic 
Block9

013E – 013E

Basic 
Block10

013F – 01C7

Basic 
Block11

01C8 – 01C8

Basic 
Block12

01C9 – 0251

Basic 
Block13

0252 – 0252

Basic 
Block14

0253 – 02D9

Basic 
Block15

02DA – 02DA

Basic 
Block16

02DB – 03BD

Basic 
Block17

03BE – 041B

Basic 
Block18

041C – 0447

Basic 
Block19

Fig. 4. According to the three principles of dividing basic blocks, the opcode
obtained by decompiling can be divided into several basic blocks.

However, such a setting will cause problems in subsequent

calculations, i.e., it is impossible to distinguish between ”own

nodes” and ”unconnected nodes” (both of which have the

corresponding element position of 0).

An example is given below to better illustrate the definition

of the matrix, as shown in Fig. 6.

D̃ is the degree matrix of the self-connected matrix, defined

as shown in equation 3.

D̃ij =
∑

j

Ãij (3)

The definition of the degree matrix is still illustrated below

using the data in Fig. 6, where D̃−
1

2 is the inverse of the

square root taken from the basis of the self-connected degree

matrix, as shown in equation 4.

Ã =













1 1 1 1 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1













D̃ =













4 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2













D̃−
1

2 =













1 1 1 1 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1













(4)

2) GCN Model Definition: The model is used to predict

the label ŷ, when ŷ = 1, it indicates that there is some

vulnerability, otherwise, it indicates that the smart contract



0000 – 000C

Basic 
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000D – 0040

Basic 
Block2

0041 – 0045

Basic 
Block3

0046 – 004D

Basic 
Block4

004E – 0051

Basic 
Block5

0052 – 00D6

Basic 
Block6

00D7 – 00D8

Basic 
Block7

00D9 – 00E0

Basic 
Block8

00E1 – 013D

Basic 
Block9

013E – 013E

Basic 
Block10

013F – 01C7

Basic 
Block11

01C8 – 01C8

Basic 
Block12

01C9 – 0251

Basic 
Block13

0252 – 0252

Basic 
Block14

0253 – 02D9

Basic 
Block15

02DA – 02DA

Basic 
Block16

03BE – 041B

Basic 
Block18

041C – 0447

Basic 
Block19

02DB – 03BD

Basic 
Block17

Fig. 5. After getting the basic blocks, we first add jump edges between
the basic blocks according to the jump logic of the opcode, and then add
sequential edges between the basic blocks according to the code running flow.

is secure. The network model is described below, the specific

network model is shown in Fig. 7.

The network model consists of an input layer, an output

layer, and some hidden layers, where each layer is computed

1

3 2

4 5

0 1 1 1 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

+

1 1 1 1 0

0 1 0 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

1

3 2

4 5

Fig. 6. Definition of Ã matrix.

…

…Vulnerability ? (1 or 0)

Input

Hidden Layer

ReLU

…

Hidden Layer

ReLUReLU

Fig. 7. The GCN model structure used in this paper uses a network model
with different layers of hidden layers to predict contract vulnerabilities.

and the results are fed into the activation function ReLU(·).
After several layers of computation, a prediction label is an

output by the output layer, where 1 indicates that the contract

has some kind of vulnerability, otherwise it indicates that the

contract is secure.

The process of CFG construction has been described in the

previous section, using the adjacency matrix A and the node

feature matrix X to represent the corresponding CFG as the

input to the network model. Since the work in this paper does

not involve natural semantic processing for the operand part,

the node feature matrix X will be used instead of the unit

matrix.

In this paper, we try to detect smart contracts using a

network model containing hidden layers from 1 to 4 layers,

examine the effect of the number of network layers on each

evaluation metric, and analyze the reasons for metric changes.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first introduce the dataset for the ex-

periments, and then describe the details and results of the

experiments.

A. Smart Contracts Dataset

The current public dataset of smart contracts is in the

form of source code, so you need to compile the smart

contract source code file based on the public dataset and get

the smart contract bytecode file according to the compiler

version declared inside the contract. It should also be noted

that different versions of smart contract compilers are not

compatible with each other, so the compilation process should

strictly follow the declared compiler version to avoid problems

due to the compiler version.

In this paper, we use the publicly available source code

dataset for compilation, produce a dataset containing 1420



bytecodes, and assign a label to each data (set to 1 for the

existence of vulnerabilities, otherwise set to 0), among which

472 contain timestamp-dependent vulnerabilities. The dataset

was divided into a training set and a test set according to 8:2.

B. Experimental Results

In this paper, four metrics are used to judge the effectiveness

of the model for vulnerability prediction, namely Accuracy,

Recall, Precision, and F1-score. TP, FN, FP, and TN are used to

represent the classification of the prediction results, where TP

denotes contracts that detect the presence of vulnerabilities but

have vulnerabilities, FN denotes contracts that detect no exist

but have vulnerabilities, FP denotes contracts that are detected

to have vulnerabilities but do not have vulnerabilities, and TN

denotes contracts that are detected not to have vulnerabilities

but do not have vulnerabilities.

Accuracy represents the ratio of the number of correctly

detected contracts to the number of all contracts and is

calculated as shown in equation 5.

Accuracy =
TP + TN

TP + FN + FP + TN
(5)

Recall represents the ratio of the number of contracts

detected with vulnerabilities to the number of all contracts

containing vulnerabilities, and is calculated as shown in equa-

tion 6.

Recall =
TP

TP + FN
(6)

Precision represents the ratio of the number of contracts

detected as vulnerable and having vulnerabilities to the number

of all contracts detected as containing vulnerabilities and is

calculated as shown in equation 7.

Precision =
TP

TP + FP
(7)

The F1-score is a comprehensive assessment metric that

balances accuracy and recall and can be considered as the

inverse average of accuracy and recall, which is calculated as

shown in equation 8.

F1− score = 2 ∗
Presicion ∗Recall

Presicion+Recall
(8)

During the experiment, the number of layers of the GCN

model was changed to observe the changes of each index,

and the results are shown in Fig. 8 (for the convenience of

graphing, the ”result*100” is done on each result).

From the experimental results, it is clear that the accuracy

and F1 scores show an overall decreasing trend as the number

of network layers increases. And it is easy to observe that there

is a greater decrease in recall in the network models with 5

and 6 layers; there is also a small decrease in accuracy in the

network model with 6 layers.

According to the structure of neural networks, it is known

that the more layers of hidden layers, in addition to the input

and output layers, the more significant the non-linearity is.

51.08
53.44

60.02
56.35

43.01
46.53

28.37 27.21
29.97

26.12
23.59

14.86

28.26 27.87

21.26
17.01

0

10

20

30

40

50

60

70

3 layers 4 layers 5 layers 6 layers

Accuracy Recall Precision F1-Score

Fig. 8. Results of ablation experiments.

In the process of model learning, which is the process of

adjusting and optimizing the weights and thresholds of each

connection, the neurons in the latter layer receive the abstract

data from the processed neurons in the previous layer, so the

higher the number of layers of the network model, the higher

it’s level of abstraction, and it will show better results on some

specific tasks. However, in this problem, it is obvious that an

excessively deep network level is not needed, and it is clear

from the experimental results that the prediction results of a

3 or 4-layer network are more informative.

In addition, the work in this paper does not incorporate the

semantic processing part, and the features of the graph nodes

are not well characterized, which is guessed to be the reason

for the low precision and F1-Score. The following conjectures

may improve the accuracy of the model’s prediction at present.

1) Add the semantic feature processing part. After decom-

piling to get the decompiled code, adding the part of

natural language processing can get more optimized

node feature data and make the prediction results more

accurate.

2) Further classify the edges of the control flow graph, for

example, they can be divided into conditional jumping

edges, and sequential jumping edges, to optimize the

feature data.

The current existing research has uneven work in the part of

generating feature data, and the node feature data can describe

the node meaning, which has a relatively large impact on the

model prediction results.

C. Experiment Comparison

This paper lists the results of other vulnerability detection

methods for smart contracts, of which there are three based

on non-deep learning, respectively, a smart contract automatic

audit tool oyente [13], an inspection tool based on symbolic

execution techniques Mythril [43], and a static analysis tool

Smart check [44]; two deep learning based methods LSTM

and GRU. The specific comparison results are shown in Table

II.

Among these methods, the one that can achieve the best

results is Mythril, with an accuracy rate of 61.08%. The

reason is that its detection principle is relatively complex and

requires taint analysis and other related technologies, so it



Table II. The results of the listed non-deep learning based methods and deep
learning based methods for contract vulnerability detection in Accuracy,

Recall, Presicion and F1-Score for comparison with the method GCN in this
paper.

Methods Accuracy Recall Precision F1-Score

Non-deep Learning

Oyente 59.45 38.44 45.16 41.53
Mythril 61.08 41.72 50.00 45.49

Smart check 44.32 37.25 39.16 38.18

Deep learning
LSTM 50.79 59.23 50.23 54.41
GRU 52.06 59.91 49.41 54.15

Our method 53.44 46.53 26.12 27.87

can achieve better results. The accuracy of deep learning-

based vulnerability detection methods is slightly above 50%,

but the GCN model used in this paper has better results. It

has promising results under the conditions of using the basic

network model and the basic composition strategy, which is

sufficient to show the effectiveness of using smart contract

bytecode files for vulnerability detection and the GCN model.

Optimizing feature data and network models on this basis is

more likely to result in better data.

V. CONCLUSION

This paper introduces a method of applying graph neural

networks to smart contract vulnerability detection, and the

experimental results show that vulnerability detection using

bytecode is a feasible detection method. When constructing

the network model, it is important to choose the appropriate

network depth and not blindly increase the number of hidden

layers. Subsequent research of such work should focus on

how to generate graph structures, whether using smart contract

source code or smart contract bytecode, the feature data

should be able to better express the invocation relationship

between functions, the execution process of the contract, and

the semantics of the contract instructions. On this basis with

a suitable graph neural network model, the prediction results

can be further optimized.
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