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Figure 1: Cryptocurrency as Brownian Motion

Abstract

This paper offers a thorough examination of the univariate pre-
dictability in cryptocurrency time-series. By exploiting a combi-
nation of complexity measure and model predictions we explore
the cryptocurrencies time-series forecasting task focusing on the
exchange rate in USD of Litecoin, Binance Coin, Bitcoin, Ethereum,
and XRP. On one hand, to assess the complexity and the randomness
of these time-series, a comparative analysis has been performed
using Brownian and colored noises as a benchmark. The results
obtained from the Complexity-Entropy causality plane and power
density spectrum analysis reveal that cryptocurrency time-series
exhibit characteristics closely resembling those of Brownian noise
when analyzed in a univariate context. On the other hand, the ap-
plication of a wide range of statistical, machine and deep learning
models for time-series forecasting demonstrates the low predictabil-
ity of cryptocurrencies. Notably, our analysis reveals that simpler
models such as Naive models consistently outperform the more
complex machine and deep learning ones in terms of forecasting
accuracy across different forecast horizons and time windows. The
combined study of complexity and forecasting accuracies high-
lights the difficulty of predicting the cryptocurrency market. These
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findings provide valuable insights into the inherent characteris-
tics of the cryptocurrency data and highlight the need to reassess
the challenges associated with predicting cryptocurrency’s price
movements.
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1 Introduction

Cryptocurrencies have emerged as a significant asset in the global fi-
nancial system, offering a new paradigm for digital transactions [19].
Their decentralized nature, coupled with their potential for high
returns, has attracted the attention of investors, researchers, and
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financial institutions alike [4]. The cryptocurrency market is in-
fluenced by several key factors. Market sentiment and speculation
play a significant role, with prices being highly sensitive to social
media, news events, celebrity endorsements, and public perceptions.
These speculative behaviors cause what are perceived as rapid and
unpredictable price changes, making it difficult to distinguish be-
tween genuine value shifts and short-term market reactions [18].
Additionally, the evolving and inconsistent regulatory environment
is another influential factor. Announcements of new regulations,
enforcement actions, or changes in legal status can lead to sud-
den and volatile price movements, creating an unstable investment
landscape. This volatile and complex behavior of cryptocurrencies
presents unique challenges for traditional financial analysis and
forecasting methods [2].

This study analyzes on an extended time period five prominent
cryptocurrencies’ exchange rates in USD: Litecoin (LTC-USD), Bi-
nance Coin (BNB-USD), Bitcoin (BTC-USD), XRP (XRP-USD), and
Ethereum (ETH-USD). We aim to provide a comprehensive un-
derstanding of cryptocurrency dynamical features and put under
scrutiny their predictability in a univariate context. To this aim,
this study leverages complexity measures such as the Permutation
Entropy [3] and the CH-plane [21], and statistical, machine and
deep learning models for time-series analysis, ranging from simple
Naive models and ARIMA [14] up to more complex models such
as XGBModels [8] and NBEATS [20]. This approach combines ad-
vanced statistical complexity methods with state-of-the-art machine
learning techniques to capture the intricate patterns and potential
predictability in cryptocurrency markets [16]. Our methodology
includes the analysis of cryptocurrencies through the Complexity-
Entropy causality plane (CH-plane) [21] and power density spec-
trum. These tools allow us to draw parallels with Brownian motion,
a well-known stochastic process that describes the random motion
of particles suspended in a fluid. Interestingly, Brownian motion
is often used as a benchmark for random behavior in financial
time-series and has a long tradition in the modelling of the stock
market [1]. By comparing the characteristics of cryptocurrency
time-series to Brownian motion, this study aims to gain insights
into the efficiency and randomness of these markets, ultimately
addressing the question of whether cryptocurrencies exhibit pre-
dictable patterns or are essentially pure noise. Furthermore, we
employ a range of forecasting models, from simple statistical ap-
proaches to sophisticated machine and deep learning algorithms,
to assess the predictability of cryptocurrency price movements [9].
This comparative analysis not only evaluates the performance of
different forecasting techniques but also provides insights into the
inherent predictability of cryptocurrency markets. Our research
emphasizes the potential effectiveness of simpler forecasting meth-
ods under certain conditions, challenging the hypothesis that more
sophisticated models always yield better results in the context of
cryptocurrency time-series forecasting [26]. By combining complex-
ity analysis with predictive modeling, this study aims to provide a
comprehensive understanding of cryptocurrency dynamical behav-
ior and predictability.
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2 Related literature

Permutation entropy and the Complexity-Entropy (CH) plane have
been widely used to characterize the complexity and predictability
of time-series data. The concept of permutation entropy as a mea-
sure of the degree of randomness in a time-series was introduced
in [3]. This method has gained popularity due to its simplicity and
effectiveness in quantifying the temporal structure of complex sys-
tems. The CH-plane, proposed in [21], plots permutation entropy
against the statistical Jensen-Shannon complexity measure Cys[P],
is a functional of the probability distribution P associated with the
time series [3], allowing for the classification of different dynamical
regimes. This approach has been successfully applied to various
fields, including financial markets [28].

The relationship between the CH-plane and the predictability
of cryptocurrency time-series has been studied in several works.
Notably, in [23] the authors analyzed the entropy and statistical
complexity of Bitcoin and Ethereum time-series, suggesting that the
price dynamics are largely driven by noise. This finding aligns with
the efficient market hypothesis, which posits that asset prices fully
reflect all available information, making them inherently unpre-
dictable [29]. Similarly, [23] applied the CH-plane methodology to
map cryptocurrencies and found that their behavior varies widely
within the plane, with price dynamics ranging from stochastic to
more structured. This work observed that cryptocurrencies with
high market capitalization tend to be more complex and less en-
tropic than those with very low market capitalization, suggesting
that major cryptocurrencies are less market efficient. While these
studies have employed complexity measures and the CH-plane to
assess the nature of cryptocurrency time-series, they are based on
much shorter time windows and have primarily focused on charac-
terizing the dynamics rather than directly evaluating predictability.

Despite the challenges posed by the noisy nature of cryptocur-
rency time-series, some studies have reported successful predictions
using various machine learning (ML) and deep learning (DL) mod-
els. However, it is crucial to note that most of these models were not
compared with naive forecasting methods, or they introduced past
and future covariates in the forecasting task, potentially inflating
their perceived effectiveness. For example [5] employed a range of
ML models to predict cryptocurrency returns, reporting promis-
ing results. However, the study did not include a comparison with
naive forecasting methods. The study [7] used GARCH-type mod-
els to forecast cryptocurrency volatility, incorporating exogenous
variables, which may have contributed to the model’s performance.
In [15] the authors applied a DL-based approach for cryptocurrency
price prediction, reporting high accuracy. However, this study did
not include a comparison with simpler forecasting methods. Simi-
larly, [17] used Recurrent Neural Networks and Long Short-Term
Memory networks for Bitcoin price prediction, but also lacked
comparisons with baseline models. The authors of [22] integrated
additional market indicators and sentiment analysis in their fore-
casting models, potentially improving predictions but deviating
from a purely univariate approach. More recently, [16] investigated
the predictability of cryptocurrency trading volume using support
vector regression (SVR) with different kernels. They found that
SVR with radial basis function kernel outperformed other models
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for next-day trading volume prediction, while SVR with polyno-
mial kernel was superior for next-week predictions. These studies
highlight the importance of a careful model evaluation and compar-
ison with simple benchmarks to assess the true predictive power
of complex models in cryptocurrency forecasting. Our study aims
to address this gap by providing a comprehensive comparison of
various forecasting methods, including naive models, in a purely
univariate context.

3 Methodology
3.1 Data Collection

The daily pricing data of the cryptocurrencies used in this study are
collected from the Yahoo Finance database. Each cryptocurrency
time-series y ranges from 2020-07-03 to 2023-12-21, and no data
preprocessing was applied. The data was split into two subsets, i.e., a
training series yrqin and a test series y;qrget. The split date index is
2023-07-04, meaning that the last 180 data points represent y¢arget-

To comprehensively evaluate the forecasting models (statistical,
ML, and DL) and conduct the complexity analysis, we adopted
a multiple timescale approach. This allows for a more in-depth
understanding of cryptocurrency dynamics across various time
horizons. Three different training time-window lengths (t,,) were
applied on yYsrqin, i€, (i) tw = 3 years, (ii) t,, = 1 year and (iii)
tw = 6 months. Using these three different t,, values allows us
to identify whether there are long-term, mid-term, or short-term
patterns, respectively, within the cryptocurrency time-series data.
The ysarger is the same for each considered time window t,,.

A visual summary of the cryptocurrency univariate time-series
and scenarios considered in this paper is shown in Fig. 2. The
considered scenarios are:

(1) ty =3 years,

Yerain = {y(t) V¥ 2020-07-03 < t < 2023-07-04}
(2) tw =1 year,

Yrrain = {y(t) ¥ 2022-07-03 < t < 2023-07-04}
(3) ty = 6 months,

Ytrain = {y(t) YV 2023-01-04 < t < 2023-07-04}

3.2 Complexity Measures

In order to evaluate the statistical complexity and the level of disor-
der and unpredictability of each cryptocurrency this study relies on
the Bandt and Pompe permutation entropy [3] (PE) and the intensive
statistical complexity measure Cys[P] proposed in [21], situating
each cryptocurrency in the Complexity-Entropy (CH) plane [21].

The permutation entropy quantifies the degree of randomness
inherent in a process; the lower the entropy, the higher the pre-
dictability of the process. Focusing on the relative ordering of the
time-series values, the permutation entropy takes into account the
temporal causality within the series. For a time-series of length n,
ordinal patterns of user-defined positive integer size d : n > 5d! [23]
are created. Then, the relative frequencies of these patterns are cal-
culated to form a probability distribution. The permutation entropy
is defined as the Shannon entropy of this distribution. It ranges
from 0, which represents complete predictability, to log(d!), which
represents maximum randomness. In this study, we set d = 5 for
tw =3 years, and d = 4 for t,, = 1 year and t,, = 6 months.
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Standardized Cryptocurrency Exchange Rate in US Dollars
T

5 —— LTC-USD ---- t,3years start date: 2020-07-03
—— BNB-USD ——- tylyear start date: 2022-07-03
—— BTC-USD —— ty,6months start date: 2023-01-04
4 ETH-USD Test start date: 2023-07-04

— XRP-USD

Figure 2: Overview of the Cryptocurrency time-series
analyzed in this paper. The different starting dates relative
to the three chosen time windows t,, are shown. The cryp-
tocurrency time-series have been standardized for clarity
of the plot.

Furthermore, we employ the Jensen-Shannon complexity mea-
sure Cjs[P] to quantify the complexity of the underlying prob-
ability distribution P of the time-series. This measure integrates
the concepts of permutation entropy and Jensen—-Shannon diver-
gence (Djs), enabling a comprehensive capture of both the un-
certainty and the structure of the distribution. The calculation of
Cys[P] involves a two-step process: first, determining the Djg be-
tween the probability distribution P and a uniform distribution,
and then multiplying this divergence by the entropy of P. This
approach provides valuable insights into the system’s complexity
by simultaneously accounting for two critical aspects: diversity,
which represents the amount of uncertainty or unpredictability in
the distribution, and distinctiveness, which quantifies the degree to
which privileged fluctuations exist among those accessible to the
system [23].

By calculating both quantities, valuable insight can be gained
regarding the distribution and the degree of correlations of time-
series patterns, thereby reflecting the interplay between order and
disorder. Plotting the PE and the Cys[P] of a time-series in the
CH-plane, one can distinguish between different dynamical behav-
iors: deterministic time-series are typically characterized by low
entropy and high complexity, while purely random processes such
as Brownian motion by high entropy and low complexity.

Furthermore, we employ the permutation Jensen-Shannon dis-
tance (PJSD) [27] to quantify the degree of similarity between each
cryptocurrency time-series and various colored noises. This mea-
sure combines the concepts of Jensen-Shannon divergence (Dys)
and Permutation Entropy (PE) to provide a robust metric for com-
paring time-series. The PJSD is calculated as 4/D;s(P, Q) where
P and Q are the ordinal probability distributions associated with
the two time-series under analysis. In our case, P represents the
distribution of a cryptocurrency time-series, while Q represents
the distribution of a specific colored noise. By computing the PJSD
between each cryptocurrency and various colored noises, we can
precisely quantify how closely the dynamics of cryptocurrency
markets resemble different types of random processes.
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Finally, we evaluate the cryptocurrency time-series in the fre-
quency domain through the Power Spectral Density (PSD). The PSD
plot shows how the power of a signal is distributed over frequencies.
It provides key insights into the periodicities, dominant frequencies,
and scaling behaviors of the time-series. In particular, the power
spectral density S(f) of colored noises follows a power law dis-
tribution as a function of the frequency f: S(f) « 1/f%, where a
is the power-law exponent characterising each colored noise. For
instance, a lower absolute value of « indicates that the time-series
is close to white noise (@ = 0 being its characteristic exponent),
while a higher absolute value of « indicates that the time-series
reveals more structured patterns.

3.3 Statistical, Machine and Deep Learning
Models

In this study, we employ a wide range of models for time-series
forecasting, including statistical models, ML models, and DL models.
Comparing the performance of different types of models enables
us to gain insights into the underlying structure of the time-series,
the complexity, the predictability, and the nature of the informa-
tion present in the data. By comparing the performance of the
different model types, we can infer whether the time-series ex-
hibit identifiable patterns that can be learned and predicted, or
if it is inherently noisy and lacks significant predictable signals.
This approach enables a comprehensive assessment of cryptocur-
rency market dynamics and of the efficacy of various forecasting
techniques in this financial domain.

The complete list of models used in our analysis is shown in Ta-
ble 1. The models and the back-testing procedure are implemented
using the Darts [12] Python library.

Table 1: List of Models by Category

Class of Models Models

NaiveDrift [14], NaiveSeasonal [14],
ARIMA [14],

Exponential Smoothing (ETS) [14]
Complex Exponential Smoothing (CES) [24]
TBATS [10], Prophet [25]

Statistical

Machine Learning RandomForest [6], XGBModel [8]

Deep Learning VanillaRNN [11], LSTM [13], NBEATS [20]

The back-testing procedure trains a model M with a specified
forecast horizon f;, and time window t,,. It begins by training M
on the initial y;,4in dataset, constrained to the defined time win-
dow t,,. The model then generates a forecast spanning f;, time
steps. Following this, the procedure incrementally expands y;rqin
by incorporating one sample from y;4rger. This process repeats
iteratively, continuously updating the training set and producing
new forecasts. This rolling window approach enables a compre-
hensive evaluation of the model’s predictive performance across
various temporal segments of the data. More specifically, at time ¢,
the forecast is obtained as:

g(t) = M(y(t = fh),y(t = fh=1),....y(t = fh = tw)).
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The forecasting metric used for comparing the models accuracy
is the Mean Absolute Percentage Error (MAPE), defined as:

§(t) - Ytarget (t)

X 100
ytarget(t)

) 1 v

MAPE (y, ytarget) = T Z

t=1

where ¢ corresponds to the forecast of a given model, t = 1 is the

first forecast index and T is the size of y;qrger- The MAPE metric is

evaluated over the entire ysqrger by using only the point predicted

at the given forecast horizon f,. This approach allows for a focused

evaluation of the models’ predictive accuracy at specific future

time points, as shorter-forecast points do not influence the metric
computation.

4 Results

4.1 Complexity measures

The CH-plane plots depicted in Fig. 3a, 3b and 3¢ show that all cryp-
tocurrencies are situated in the lower right corner, indicating high
permutation entropy and low statistical complexity. This position-
ing suggests that their statistical properties closely resemble those
of different types of noise, i.e., colored noises such as white, 1/f
(pink), 1/f? (Brownian), and 1/f’ 5/2 noises, which are represented
in Fig. 3 along the dashed "noises line". Indeed, the cryptocurrency
time-series lie precisely on the noises line.

The high permutation entropy values imply a significant de-
gree of randomness and unpredictability, while the relatively low
statistical complexity values indicate minimal underlying struc-
ture. Moreover, as the time window shortens, i.e., from t,, = 3
years to t,, = 6 months, the statistical characteristics of the cryp-
tocurrency time-series increasingly align with those of white noise.
This behaviour suggests a growing level of randomness and unpre-
dictability, and the lack of meaningful patterns in cryptocurrency
time-series particularly over short-term periods.

To quantify these similarities more precisely, we computed the
PJSD between each cryptocurrency and various types of colored
noise over the full available time window 2020-07-03 to 2023-12-
21. Results are shown in Table 2 and provide a clear comparative
analysis of which type of noise each cryptocurrency most closely
resembles. The PJSD values indicate that, for most cryptocurrencies,
the minimum distance is observed with respect to Brownian noise.
However, an exception is noted with XRP-USD, which shows a
higher similarity to pink noise.

Table 2: Permutation Jehnsenn-Shannon distances between
Cryptocurrencies and colored noises over the full available
time window 2020-07-03 to 2023-12-21. The minimum dis-
tance is observed with Brownian noise for most cryptocur-
rencies. XRP-USD represents an exception showing a higher
similarity to pink noise.

White Pink-1/f Brownian-1/f2 1/f5/2 1/f3

LTC-USD  0.368 0.215 0.198 0.334  0.539
BNB-USD  0.358 0.212 0.209 0.353  0.552
BTC-USD  0.355 0.211 0.194 0.338  0.530
ETH-USD  0.356 0.202 0.198 0.339  0.536
XRP-USD  0.351 0.214 0.230 0.374  0.566
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Figure 3: Complexity Entropy causality plane (CH-plane) of
cryptocurrencies time-series (LTC-USD, BNB-USD, BTC-USD,
ETH-USD, XRP-USD) compared to different types of noises:
white, 1/f (pink), 1/f? (Brownian), and 1/f 5/2, computed us-
ing different time windows settings. All the cryptocurrencies
lie on the dashed line characterizing the colored noises. As
the time window shortens, the cryptocurrency data increas-
ingly align with the position of white noise.
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The PSD curves shown in Fig. 4 are computed by using the
whole available data time range, i.e., from 2020-07-03 to 2023-12-21.
The plot corroborates the similarity of the cryptocurrency time-
series to 1/f2 (Brownian) noise whose exponent is represented
by the full black reference line. In addition, the analysis was ex-
tended to shorter time windows, i.e. t,, = 3 years, t,, = 1 year, and
tw = 6 months, as well. Interestingly, the spectral characteristics of
the cryptocurrencies remain consistent, i.e., the PSD consistently
follows the power law decay exponent of the Brownian motion,
regardless of the time window. The plot of the PSD for the other
time windows is not reported here for brevity.
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Figure 4: Power Spectral Density (PSD) plots of the 5 cryp-
tocurrency univariate time-series (LTC-USD, BNB-USD, BTC-
USD, ETH-USD, XRP-USD) computed using the whole avail-
able data time range (from 2020-07-03 to 2023-12-21). The PSD
plots shows that cryptocurrency time-series follow a power-
law distribution comparable to Brownian noise, whose expo-
nent is indicated by the full black reference line.

4.2 Model performances

By examining Tables 3a, 3b and 3c, several observations can be
made regarding the prediction accuracy of the considered models
across cryptocurrencies, time windows t,,, and forecast horizons fj,.
Notably, as shown in Table 3, one of our core results is that statistical
approaches consistently outperform their ML and DL counterparts.

Focusing on the statistical approaches, models like AutoARIMA,
AutoETS, AutoCES, and TBATS did not significantly over-perform
the much simpler Naive models. In fact, despite the greater so-
phistication and theoretical guarantees of such models, the fitting
procedures of these advanced models resulted in average perfor-
mances that are not statistically distinguishable from those achieved
by the Naive models. The aggregated view in Table 4, where the
mean MAPE over all cryptocurrencies and all t,, is reported, to-
gether with the corresponding standard deviations, substantiates
this result.

In contrast, the Prophet model resulted in much worse perfor-
mances compared to the other statistical methods, and in some
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Table 3: MAPE results for statistical and ML/DL models across five cryptocurrencies (LTC-USD, BNB-USD, BTC-USD, ETH-USD,
XRP-USD) for (a) 3-year, (b) 1-year, and (c) 6-month time windows, with forecast horizons of 1, 7, and 30 days. A key finding is
that statistical approaches consistently outperform ML and DL models, with the exception of NBEATS, which shows competitive
but not consistently superior performance. Interestingly, sophisticated statistical models like AutoARIMA, AutoETS, AutoCES,
and TBATS did not significantly outperform simpler Naive models. DL models, despite their reputation for modeling complex
sequences, face challenges in cryptocurrency forecasting. As the time window shrinks, prediction errors for VanillaRNN and
LSTM models increase across all forecast horizons. Similarly, traditional ML algorithms like RandomForest and XGBModel
struggle to discern patterns amid the inherent noise and volatility.

(a)
Time Window 3 years
Dataset LTC-USD BNB-USD BTC-USD ETH-USD XRP-USD
Forecast Horizon 1 7 30 1 7 30 1 7 30 1 7 30 1 7 30
NaiveDrift 1.914 5.361 12.562 1.415 3.808 7.815 1.298 3.617 11.012 1.452 3.946 9.203 2.110 6.600 16.589
NaiveSeasonal 1.911 5.298 12.436 1.419 3.759 7.049 1.296 3.619 11.307  1.448 3.886 9.011 2.105 6.517 16.276
AutoARIMA 1.929 5.318 12.444  1.437 3.770 7.055 1.296 3.619 11.307 1.447 3.875 9.011 2.093 6.5 16.264
AutoETS 1933 5715 14.884 1433  4.065 10.249 1.292 3.579 11.071 1461 3.968 9.439 2.131 6983  18.397
AutoCES 1.938 5.233  12.766 1.408 3.735 7.023 1.310 3.652 11.662 1.452 3.843 9.096 2.07 6.529 17.290
TBATS 1.912 5.294 12.429 1.410 3.832 7.685 1.293 3.618 11.310  1.447 3.880 9.011 2.094 6.506 16.267
Prophet 22301 27.390 42971 11.929 14.062 18.253 10.140 13.130 23.244 12.247 15.457 24.848 15.492 18903 27.875
RandomForest 2.202 8.234 18.755 1.651 4.974 25.132  1.675 6.531 11.728  1.694 5.117 10.593 2.364 9.501 30.308
XGBModel 2,707  10.355 19.039 1.985 5483  24.539 1.902 6546 13.549 1.850 5.577 12,534 2.715 12416 37.773
VanillaRNN 2.064 7.209 19.112  2.967 6.772 8.973 99.091 99.102 99.120 84.672 84.746 85.049 2.237 7.922 29.138
LSTM 2.195 7.461 19.425  2.564 7.541 9.226 99.765 99.789 99.794  93.190 93.211 93.349 2.333 8.359 31.029
NBEATS 2.717 7.730 16.043  2.023 5.680 23.357 1.875 4.801 15.742  2.006 5.512 12.853 3.393 13.202 32.761
(b)
Time Window 1 year
Dataset LTC-USD BNB-USD BTC-USD ETH-USD XRP-USD
Forecast Horizon 1 7 30 1 7 30 1 7 30 1 7 30 1 7 30
NaiveDrift 1.919 5.458 12.995 1.420 3.779 7.277 1.299 3.627 11.077 1455 3.967 9.390 2.117 6.703 17.179
NaiveSeasonal 1.911 5.298 12.436 1.419 3.759 7.049 1.296 3.619 11.307  1.448 3.886 9.011 2.105 6.517 16.276
AutoARIMA 1.911 5.298 12.436 1.404 3.741 7.035 1.296 3.619 11.307  1.449 3.877 9.011 2.103 6.527 16.278
AutoETS 1.911 5.298 12.436 1.402 3.735 7.032 1.296 3.619 11.307  1.447 3.875 9.012 2.079 6.555 16.243
AutoCES 1.945 5.335 13.348 1.412 3.750 7.104 1.315 3.612 11.230  1.457 3.881 9.150 2.104 6.743 17.514
TBATS 1914 5306 12.271 1429 4.067 9.189 1.293 3.595 10.605 1.44 3.903 9.226  2.071 6.606  17.082
Prophet 11.709 14.065 22.853 6.931 8.420 15.934 7.437 9.022 15.100 7.054 8.407 13.501 12.627 14.862 21.915
RandomForest 2.080 6.878 19.199 1.685 4.866 17.374 1.693 5.955 12.300 1.773 4.597 10.449 2.699 9.355 20.851
XGBModel 2.499 8.870 20.802 1.875 5.475 18.333  2.029 6.914 11.978 1.963 5.012 11.227 3.082 10.037 24.186
VanillaRNN 8.156 11.960 12.618 56.079 56.673 58.750 99.658 99.674 99.691 94.179 94339 94.640 2.219 6.955 16.117
LSTM 8.217  10.302 13364 77.060 78361 79.712 99.912 99.929 99.936  98.403 98.613 98.772 2.127  6.824  17.304
NBEATS 2.573 7.270 16.216  2.015 4.593 9.293 1.744 4.741 13.307 1.835 4.727 11.594 3.283 9.125 22.532
()
Time Window 6 months
Dataset LTC-USD BNB-USD BTC-USD ETH-USD XRP-USD
Forecast Horizon 1 7 30 1 7 30 1 7 30 1 7 30 1 7 30
NaiveDrift 1.922 5.454 13.676 1.425 3.803 7.433 1.315 3.787 11.247  1.463 4.062 9.966 2.130 6.881 18.209
NaiveSeasonal 1911 5298 12436 1419 3.759 7.049 1.296 3.619 11307 1.448 3.886 9.011 2.105 6.517 16.276
AutoARIMA 1.907 5.205 11.907 1.401 3.759 8.460 1.296 3.619 11.307  1.456 3.871 9.014 2.115 6.565 16.261
AutoETS 1.911 5.298 12.435 14 3.742 7.043 1.298 3.617 11.157 1.449 3.869 9.007 2.073 6.578 16.230
AutoCES 1.948 5.359 13.823 1.414 3.763 7.291 1.333 3.765 11.306  1.472 3.992 9.788 2.138 6.990 18.763
TBATS 2.005 6.319 14.243 1.471 3.809 8.267 1.315 3.784 10.292 1.487 4.378 10.124 2.088 6.631 16.286
Prophet 8.903 11.634 23.436 5.173 6.805 12.722  5.532 7.451 16.171  4.631 6.163 12.856 10.751 13.959 25.909
RandomForest 2417  8.036  18.194 1.652  4.149  14.504 1.655 6.077 12362 1.826 4.498 9.907 2728  9.237  20.008
XGBModel 2.689 9.011 20.523 1.873 5.081 15.371 1.803 6.350 11.773  2.082 4.771 10.499 3.947 9.819 24.050
VanillaRNN 25377 26.717 31597 73.680 74.399 76.592 99.801 99.820 99.838 96.590 96.848 97.161 2.279 6.761 15.244
LSTM 27.644 28.832 33.609 86.521 87.064 88.554 99.949 99.966 99.975 99.096 99.380 99.550 2.408 6.637 18.355

NBEATS 2.736  6.877 15.221  1.782  4.293 9.635 1.847 5.061 12.649 1984  4.599 10.543 3.854 10.144 21.714
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Table 4: Aggregated view of mean MAPE + standard devi-
ation across all cryptocurrencies and time windows corre-
sponding to tables (a), (b) and (c) in Table 3, for statistical,
machine learning (ML), and deep learning (DL) models. This
view illustrates that while statistical approaches generally
outperform ML and DL methods, the complex statistical tech-
niques (AutoARIMA, AutoETS, AutoCES, and TBATS) show
no statistically significant improvement over Naive models,
as evidenced by the overlapping standard deviations.

Forecast Horizon 1 7 30

NaiveDrift 1.644 + 0.328 4.723 + 1.227 11.709 + 3.496
NaiveSeasonal 1.636 + 0.325 4.616 = 1.166 11.216 + 3.251
AutoARIMA 1.636 £ 0.326 4.611 + 1.17 11.273 + 3.128
AutoETS 1.634 + 0.324 4.7 £1.245 11.729 + 3415
AutoCES 1.648 + 0.326 4.679 + 1.244 11.81 + 3.807
TBATS 1.645 + 0.321 4.768 + 1.21 11.619 + 3.064
Prophet 10.19 + 4.614 12.649 £ 5532 21.173 + 7.865
RandomForest 1.986 + 0.397 6.534 + 1.903 16.778 + 5.903
XGBModel 2.333 £ 0.606 7.448 + 2.423 18.412 + 7.345
VanillaRNN 49.937 + 43,905 51.993 +41.825 56.243 + 37.961
LSTM 53.426 + 45.967 55.485 + 43.899  60.13 + 39.327
NBEATS 2.378 £ 0.679 6.557 + 2.567 16.231 + 6.4

cases, even compared to ML and DL models. This discrepancy can
be attributed to the specific use-cases Prophet is designed to ad-
dress, characterized by strong seasonal effects and holidays. Hence,
the high volatility and the absence of regular seasonal patterns in
the cryptocurrency markets present a challenging environment for
Prophet’s underlying assumptions and mechanisms.

DL models, renowned for their ability to model complex se-
quences and capture long-term dependencies, are often seen as
holding the potential of superior performance in time series fore-
casting. However, their application to univariate cryptocurrency
time series reveals inherent challenges. These models require sub-
stantial amounts of data to be trained effectively and are prone
to overfitting, especially when compared to the noise-dominated
nature of cryptocurrency data. These limitations become evident
when examining the MAPE across decreasing time windows, as
can be seen in Table 3. The results clearly indicate that as the
time window t,, shrinks, the prediction error of VanillaRNN and
LSTM models increases, irrespective of the forecast horizon f}. The
NBEATS model stands out as a notable exception. However, while it
delivers competitive prediction accuracy, its performance does not
statistically match the top statistical models. This unexpected result
underscores a critical insight: even advanced DL architectures may
struggle in domains characterized by high volatility and noise.

Akin to deep learning models, traditional ML algorithms like
RandomForest and XGBModel - often acclaimed for their capacity
to capture intricate non-linear relationships and maintain robust
generalization - underperform in univariate cryptocurrency fore-
casting. These models also encounter difficulty in discerning signif-
icant patterns amid the stochastic fluctuations and inherent noise
of cryptocurrency markets.
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5 Discussion and Conclusion

Our study reveals that univariate forecasting of cryptocurrencies is
essentially comparable to pure noise forecasting. Simpler statistical
models are consistently comparable or outperform more complex
ML and DL models across various forecast horizons and time win-
dows in an extended time range from 2020-07-03 to 2023-12-21, for
five prominent cryptocurrencies, i.e. LTC-USD, BNB-USD, BTC-
USD, ETH-USD and XRP-USD. Complexity analysis using the CH-
plane and the Power Spectral Density (PSD) highlights the noisy
nature of cryptocurrency time-series, revealing high entropy, low
complexity, and PSD power law exponents comparable with those
of Brownian motion. These findings collectively demonstrate the
inherent stochastic nature of cryptocurrencies and the varying de-
grees of noise-like behavior they exhibit over different time scales.
These insights challenge the presence of predictable patterns in
cryptocurrency markets and suggest that their apparent complexity
may be largely attributed to noise. The resemblance to Brownian
motion implies that forecasting future prices based solely on histor-
ical data may be unfeasible. Likewise, the similarity to white noise
over shorter periods points to increased randomness and potential
challenges even in short-term forecasting.

This study challenges the conventional wisdom that increased
model complexity guarantees better performance. The inherent un-
predictability and rapid evolution of cryptocurrency markets pose
significant hurdles for deep learning and machine learning models.
These models, often acclaimed for their sophisticated designs, may
not consistently deliver superior performance across all contexts.
This aligns with the findings in [15], which observed that simple
forecasting methods can outperform more complex ones in cryp-
tocurrency markets. Our study invites researchers and practitioners
to reconsider their approach to model selection, emphasizing the
value of simple models for what concerns the ability to handle noise
and volatility.

However, it’s important to note that incorporating additional
covariates can significantly improve the forecasting accuracy of
cryptocurrency models. These covariates can be categorized into
past covariates, such as technical indicators and correlated time-
series data, and future covariates, including scheduled events and
macroeconomic forecasts. Past covariates may help mitigate noise
and complexity in the models, while future covariates can assist in
anticipating external influences on cryptocurrency markets. While
past covariates are generally easier to obtain and incorporate, fu-
ture covariates present some challenges. They are often difficult
to retrieve directly, and when forecasted rather than known with
certainty, they can introduce additional uncertainty into the model.
This observation is consistent with the findings of [22], which
demonstrated improved forecasting performance by integrating
additional market indicators and sentiment analysis. Similarly, [7]
showed that incorporating exogenous variables can enhance cryp-
tocurrency volatility forecasting.

In conclusion, our study highlights the importance of balancing
model complexity with the inherent noise and unpredictability in
cryptocurrency markets. While more sophisticated models may
offer potential benefits, the effectiveness of simpler models should
not be underestimated. Future research should focus on identifying
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the most relevant and impactful covariates for cryptocurrency fore-
casting, as well as developing methods to effectively incorporate
future covariates without introducing excessive uncertainty.
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