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Figure 1: Cryptocurrency as Brownian Motion

Abstract

This paper offers a thorough examination of the univariate pre-

dictability in cryptocurrency time-series. By exploiting a combi-

nation of complexity measure and model predictions we explore

the cryptocurrencies time-series forecasting task focusing on the

exchange rate in USD of Litecoin, Binance Coin, Bitcoin, Ethereum,

and XRP. On one hand, to assess the complexity and the randomness

of these time-series, a comparative analysis has been performed

using Brownian and colored noises as a benchmark. The results

obtained from the Complexity-Entropy causality plane and power

density spectrum analysis reveal that cryptocurrency time-series

exhibit characteristics closely resembling those of Brownian noise

when analyzed in a univariate context. On the other hand, the ap-

plication of a wide range of statistical, machine and deep learning

models for time-series forecasting demonstrates the low predictabil-

ity of cryptocurrencies. Notably, our analysis reveals that simpler

models such as Naive models consistently outperform the more

complex machine and deep learning ones in terms of forecasting

accuracy across different forecast horizons and time windows. The

combined study of complexity and forecasting accuracies high-

lights the difficulty of predicting the cryptocurrency market. These
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findings provide valuable insights into the inherent characteris-

tics of the cryptocurrency data and highlight the need to reassess

the challenges associated with predicting cryptocurrency’s price

movements.
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1 Introduction

Cryptocurrencies have emerged as a significant asset in the global fi-

nancial system, offering a new paradigm for digital transactions [19].

Their decentralized nature, coupled with their potential for high

returns, has attracted the attention of investors, researchers, and
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financial institutions alike [4]. The cryptocurrency market is in-

fluenced by several key factors. Market sentiment and speculation

play a significant role, with prices being highly sensitive to social

media, news events, celebrity endorsements, and public perceptions.

These speculative behaviors cause what are perceived as rapid and

unpredictable price changes, making it difficult to distinguish be-

tween genuine value shifts and short-term market reactions [18].

Additionally, the evolving and inconsistent regulatory environment

is another influential factor. Announcements of new regulations,

enforcement actions, or changes in legal status can lead to sud-

den and volatile price movements, creating an unstable investment

landscape. This volatile and complex behavior of cryptocurrencies

presents unique challenges for traditional financial analysis and

forecasting methods [2].

This study analyzes on an extended time period five prominent

cryptocurrencies’ exchange rates in USD: Litecoin (LTC-USD), Bi-

nance Coin (BNB-USD), Bitcoin (BTC-USD), XRP (XRP-USD), and

Ethereum (ETH-USD). We aim to provide a comprehensive un-

derstanding of cryptocurrency dynamical features and put under

scrutiny their predictability in a univariate context. To this aim,

this study leverages complexity measures such as the Permutation

Entropy [3] and the CH-plane [21], and statistical, machine and

deep learning models for time-series analysis, ranging from simple

Naive models and ARIMA [14] up to more complex models such

as XGBModels [8] and NBEATS [20]. This approach combines ad-

vanced statistical complexitymethodswith state-of-the-artmachine

learning techniques to capture the intricate patterns and potential

predictability in cryptocurrency markets [16]. Our methodology

includes the analysis of cryptocurrencies through the Complexity-

Entropy causality plane (CH-plane) [21] and power density spec-

trum. These tools allow us to draw parallels with Brownian motion,

a well-known stochastic process that describes the random motion

of particles suspended in a fluid. Interestingly, Brownian motion

is often used as a benchmark for random behavior in financial

time-series and has a long tradition in the modelling of the stock

market [1]. By comparing the characteristics of cryptocurrency

time-series to Brownian motion, this study aims to gain insights

into the efficiency and randomness of these markets, ultimately

addressing the question of whether cryptocurrencies exhibit pre-

dictable patterns or are essentially pure noise. Furthermore, we

employ a range of forecasting models, from simple statistical ap-

proaches to sophisticated machine and deep learning algorithms,

to assess the predictability of cryptocurrency price movements [9].

This comparative analysis not only evaluates the performance of

different forecasting techniques but also provides insights into the

inherent predictability of cryptocurrency markets. Our research

emphasizes the potential effectiveness of simpler forecasting meth-

ods under certain conditions, challenging the hypothesis that more

sophisticated models always yield better results in the context of

cryptocurrency time-series forecasting [26]. By combining complex-

ity analysis with predictive modeling, this study aims to provide a

comprehensive understanding of cryptocurrency dynamical behav-

ior and predictability.

2 Related literature

Permutation entropy and the Complexity-Entropy (CH) plane have

been widely used to characterize the complexity and predictability

of time-series data. The concept of permutation entropy as a mea-

sure of the degree of randomness in a time-series was introduced

in [3]. This method has gained popularity due to its simplicity and

effectiveness in quantifying the temporal structure of complex sys-

tems. The CH-plane, proposed in [21], plots permutation entropy

against the statistical Jensen-Shannon complexity measure 𝐶 𝐽 𝑆 [𝑃],

is a functional of the probability distribution 𝑃 associated with the

time series [3], allowing for the classification of different dynamical

regimes. This approach has been successfully applied to various

fields, including financial markets [28].

The relationship between the CH-plane and the predictability

of cryptocurrency time-series has been studied in several works.

Notably, in [23] the authors analyzed the entropy and statistical

complexity of Bitcoin and Ethereum time-series, suggesting that the

price dynamics are largely driven by noise. This finding aligns with

the efficient market hypothesis, which posits that asset prices fully

reflect all available information, making them inherently unpre-

dictable [29]. Similarly, [23] applied the CH-plane methodology to

map cryptocurrencies and found that their behavior varies widely

within the plane, with price dynamics ranging from stochastic to

more structured. This work observed that cryptocurrencies with

high market capitalization tend to be more complex and less en-

tropic than those with very low market capitalization, suggesting

that major cryptocurrencies are less market efficient. While these

studies have employed complexity measures and the CH-plane to

assess the nature of cryptocurrency time-series, they are based on

much shorter time windows and have primarily focused on charac-

terizing the dynamics rather than directly evaluating predictability.

Despite the challenges posed by the noisy nature of cryptocur-

rency time-series, some studies have reported successful predictions

using various machine learning (ML) and deep learning (DL) mod-

els. However, it is crucial to note that most of these models were not

compared with naive forecasting methods, or they introduced past

and future covariates in the forecasting task, potentially inflating

their perceived effectiveness. For example [5] employed a range of

ML models to predict cryptocurrency returns, reporting promis-

ing results. However, the study did not include a comparison with

naive forecasting methods. The study [7] used GARCH-type mod-

els to forecast cryptocurrency volatility, incorporating exogenous

variables, which may have contributed to the model’s performance.

In [15] the authors applied a DL-based approach for cryptocurrency

price prediction, reporting high accuracy. However, this study did

not include a comparison with simpler forecasting methods. Simi-

larly, [17] used Recurrent Neural Networks and Long Short-Term

Memory networks for Bitcoin price prediction, but also lacked

comparisons with baseline models. The authors of [22] integrated

additional market indicators and sentiment analysis in their fore-

casting models, potentially improving predictions but deviating

from a purely univariate approach. More recently, [16] investigated

the predictability of cryptocurrency trading volume using support

vector regression (SVR) with different kernels. They found that

SVR with radial basis function kernel outperformed other models
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for next-day trading volume prediction, while SVR with polyno-

mial kernel was superior for next-week predictions. These studies

highlight the importance of a careful model evaluation and compar-

ison with simple benchmarks to assess the true predictive power

of complex models in cryptocurrency forecasting. Our study aims

to address this gap by providing a comprehensive comparison of

various forecasting methods, including naive models, in a purely

univariate context.

3 Methodology

3.1 Data Collection

The daily pricing data of the cryptocurrencies used in this study are

collected from the Yahoo Finance database. Each cryptocurrency

time-series 𝑦 ranges from 2020-07-03 to 2023-12-21, and no data

preprocessingwas applied. The data was split into two subsets, i.e., a

training series𝑦𝑡𝑟𝑎𝑖𝑛 and a test series𝑦𝑡𝑎𝑟𝑔𝑒𝑡 . The split date index is

2023-07-04, meaning that the last 180 data points represent 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 .

To comprehensively evaluate the forecasting models (statistical,

ML, and DL) and conduct the complexity analysis, we adopted

a multiple timescale approach. This allows for a more in-depth

understanding of cryptocurrency dynamics across various time

horizons. Three different training time-window lengths (𝑡𝑤 ) were

applied on 𝑦𝑡𝑟𝑎𝑖𝑛 , i.e., (i) 𝑡𝑤 = 3 years, (ii) 𝑡𝑤 = 1 year and (iii)

𝑡𝑤 = 6 months. Using these three different 𝑡𝑤 values allows us

to identify whether there are long-term, mid-term, or short-term

patterns, respectively, within the cryptocurrency time-series data.

The 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 is the same for each considered time window 𝑡𝑤 .

A visual summary of the cryptocurrency univariate time-series

and scenarios considered in this paper is shown in Fig. 2. The

considered scenarios are:

(1) 𝑡𝑤 = 3 years,

𝑦𝑡𝑟𝑎𝑖𝑛 = {𝑦 (𝑡) ∀ 2020-07-03 ≤ 𝑡 ≤ 2023-07-04}

(2) 𝑡𝑤 = 1 year,

𝑦𝑡𝑟𝑎𝑖𝑛 = {𝑦 (𝑡) ∀ 2022-07-03 ≤ 𝑡 ≤ 2023-07-04}

(3) 𝑡𝑤 = 6 months,

𝑦𝑡𝑟𝑎𝑖𝑛 = {𝑦 (𝑡) ∀ 2023-01-04 ≤ 𝑡 ≤ 2023-07-04}

3.2 Complexity Measures

In order to evaluate the statistical complexity and the level of disor-

der and unpredictability of each cryptocurrency this study relies on

the Bandt and Pompe permutation entropy [3] (PE) and the intensive

statistical complexity measure 𝐶 𝐽 𝑆 [𝑃] proposed in [21], situating

each cryptocurrency in the Complexity-Entropy (CH) plane [21].

The permutation entropy quantifies the degree of randomness

inherent in a process; the lower the entropy, the higher the pre-

dictability of the process. Focusing on the relative ordering of the

time-series values, the permutation entropy takes into account the

temporal causality within the series. For a time-series of length 𝑛,

ordinal patterns of user-defined positive integer size𝑑 : 𝑛 ≥ 5𝑑! [23]

are created. Then, the relative frequencies of these patterns are cal-

culated to form a probability distribution. The permutation entropy

is defined as the Shannon entropy of this distribution. It ranges

from 0, which represents complete predictability, to 𝑙𝑜𝑔(𝑑!), which

represents maximum randomness. In this study, we set 𝑑 = 5 for

𝑡𝑤 = 3 years, and 𝑑 = 4 for 𝑡𝑤 = 1 year and 𝑡𝑤 = 6 months.
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Figure 2: Overview of the Cryptocurrency time-series

analyzed in this paper. The different starting dates relative

to the three chosen time windows 𝑡𝑤 are shown. The cryp-

tocurrency time-series have been standardized for clarity

of the plot.

Furthermore, we employ the Jensen–Shannon complexity mea-

sure 𝐶 𝐽 𝑆 [𝑃] to quantify the complexity of the underlying prob-

ability distribution 𝑃 of the time-series. This measure integrates

the concepts of permutation entropy and Jensen–Shannon diver-

gence (𝐷 𝐽 𝑆 ), enabling a comprehensive capture of both the un-

certainty and the structure of the distribution. The calculation of

𝐶 𝐽 𝑆 [𝑃] involves a two-step process: first, determining the 𝐷 𝐽 𝑆 be-

tween the probability distribution 𝑃 and a uniform distribution,

and then multiplying this divergence by the entropy of 𝑃 . This

approach provides valuable insights into the system’s complexity

by simultaneously accounting for two critical aspects: diversity,

which represents the amount of uncertainty or unpredictability in

the distribution, and distinctiveness, which quantifies the degree to

which privileged fluctuations exist among those accessible to the

system [23].

By calculating both quantities, valuable insight can be gained

regarding the distribution and the degree of correlations of time-

series patterns, thereby reflecting the interplay between order and

disorder. Plotting the PE and the 𝐶 𝐽 𝑆 [𝑃] of a time-series in the

CH-plane, one can distinguish between different dynamical behav-

iors: deterministic time-series are typically characterized by low

entropy and high complexity, while purely random processes such

as Brownian motion by high entropy and low complexity.

Furthermore, we employ the permutation Jensen-Shannon dis-

tance (PJSD) [27] to quantify the degree of similarity between each

cryptocurrency time-series and various colored noises. This mea-

sure combines the concepts of Jensen-Shannon divergence (𝐷 𝐽 𝑆 )

and Permutation Entropy (PE) to provide a robust metric for com-

paring time-series. The PJSD is calculated as
√︁

𝐷 𝐽 𝑆 (𝑃,𝑄) where

𝑃 and 𝑄 are the ordinal probability distributions associated with

the two time-series under analysis. In our case, 𝑃 represents the

distribution of a cryptocurrency time-series, while 𝑄 represents

the distribution of a specific colored noise. By computing the PJSD

between each cryptocurrency and various colored noises, we can

precisely quantify how closely the dynamics of cryptocurrency

markets resemble different types of random processes.
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Finally, we evaluate the cryptocurrency time-series in the fre-

quency domain through the Power Spectral Density (PSD). The PSD

plot shows how the power of a signal is distributed over frequencies.

It provides key insights into the periodicities, dominant frequencies,

and scaling behaviors of the time-series. In particular, the power

spectral density 𝑆 (𝑓 ) of colored noises follows a power law dis-

tribution as a function of the frequency 𝑓 : 𝑆 (𝑓 ) ∝ 1/𝑓 𝛼 , where 𝛼

is the power-law exponent characterising each colored noise. For

instance, a lower absolute value of 𝛼 indicates that the time-series

is close to white noise (𝛼 = 0 being its characteristic exponent),

while a higher absolute value of 𝛼 indicates that the time-series

reveals more structured patterns.

3.3 Statistical, Machine and Deep Learning
Models

In this study, we employ a wide range of models for time-series

forecasting, including statistical models, MLmodels, and DLmodels.

Comparing the performance of different types of models enables

us to gain insights into the underlying structure of the time-series,

the complexity, the predictability, and the nature of the informa-

tion present in the data. By comparing the performance of the

different model types, we can infer whether the time-series ex-

hibit identifiable patterns that can be learned and predicted, or

if it is inherently noisy and lacks significant predictable signals.

This approach enables a comprehensive assessment of cryptocur-

rency market dynamics and of the efficacy of various forecasting

techniques in this financial domain.

The complete list of models used in our analysis is shown in Ta-

ble 1. The models and the back-testing procedure are implemented

using the Darts [12] Python library.

Table 1: List of Models by Category

Class of Models Models

Statistical

NaiveDrift [14], NaiveSeasonal [14],

ARIMA [14],

Exponential Smoothing (ETS) [14]

Complex Exponential Smoothing (CES) [24]

TBATS [10], Prophet [25]

Machine Learning RandomForest [6], XGBModel [8]

Deep Learning VanillaRNN [11], LSTM [13], NBEATS [20]

The back-testing procedure trains a model 𝑀 with a specified

forecast horizon 𝑓ℎ and time window 𝑡𝑤 . It begins by training 𝑀

on the initial 𝑦𝑡𝑟𝑎𝑖𝑛 dataset, constrained to the defined time win-

dow 𝑡𝑤 . The model then generates a forecast spanning 𝑓ℎ time

steps. Following this, the procedure incrementally expands 𝑦𝑡𝑟𝑎𝑖𝑛
by incorporating one sample from 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 . This process repeats

iteratively, continuously updating the training set and producing

new forecasts. This rolling window approach enables a compre-

hensive evaluation of the model’s predictive performance across

various temporal segments of the data. More specifically, at time 𝑡 ,

the forecast is obtained as:

𝑦 (𝑡) = 𝑀 (𝑦 (𝑡 − 𝑓 ℎ), 𝑦 (𝑡 − 𝑓 ℎ − 1), . . . , 𝑦 (𝑡 − 𝑓 ℎ − 𝑡𝑤)) .

The forecasting metric used for comparing the models accuracy

is the Mean Absolute Percentage Error (MAPE), defined as:

MAPE (𝑦,𝑦𝑡𝑎𝑟𝑔𝑒𝑡 ) =
1

𝑇

𝑇
∑︁

𝑡=1

�

�

�

�

𝑦 (𝑡) − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 (𝑡)

𝑦𝑡𝑎𝑟𝑔𝑒𝑡 (𝑡)

�

�

�

�

× 100

where 𝑦 corresponds to the forecast of a given model, 𝑡 = 1 is the

first forecast index and 𝑇 is the size of 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 . The MAPE metric is

evaluated over the entire 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 by using only the point predicted

at the given forecast horizon 𝑓ℎ . This approach allows for a focused

evaluation of the models’ predictive accuracy at specific future

time points, as shorter-forecast points do not influence the metric

computation.

4 Results

4.1 Complexity measures

The CH-plane plots depicted in Fig. 3a, 3b and 3c show that all cryp-

tocurrencies are situated in the lower right corner, indicating high

permutation entropy and low statistical complexity. This position-

ing suggests that their statistical properties closely resemble those

of different types of noise, i.e., colored noises such as white, 1/𝑓

(pink), 1/𝑓 2 (Brownian), and 1/𝑓 5/2 noises, which are represented

in Fig. 3 along the dashed "noises line". Indeed, the cryptocurrency

time-series lie precisely on the noises line.

The high permutation entropy values imply a significant de-

gree of randomness and unpredictability, while the relatively low

statistical complexity values indicate minimal underlying struc-

ture. Moreover, as the time window shortens, i.e., from 𝑡𝑤 = 3

years to 𝑡𝑤 = 6 months, the statistical characteristics of the cryp-

tocurrency time-series increasingly align with those of white noise.

This behaviour suggests a growing level of randomness and unpre-

dictability, and the lack of meaningful patterns in cryptocurrency

time-series particularly over short-term periods.

To quantify these similarities more precisely, we computed the

PJSD between each cryptocurrency and various types of colored

noise over the full available time window 2020-07-03 to 2023-12-

21. Results are shown in Table 2 and provide a clear comparative

analysis of which type of noise each cryptocurrency most closely

resembles. The PJSD values indicate that, for most cryptocurrencies,

the minimum distance is observed with respect to Brownian noise.

However, an exception is noted with XRP-USD, which shows a

higher similarity to pink noise.

Table 2: Permutation Jehnsenn-Shannon distances between

Cryptocurrencies and colored noises over the full available

time window 2020-07-03 to 2023-12-21. The minimum dis-

tance is observed with Brownian noise for most cryptocur-

rencies. XRP-USD represents an exception showing a higher

similarity to pink noise.

White Pink - 1/𝑓 Brownian - 1/𝑓 2 1/𝑓 5/2 1/𝑓 3

LTC-USD 0.368 0.215 0.198 0.334 0.539

BNB-USD 0.358 0.212 0.209 0.353 0.552

BTC-USD 0.355 0.211 0.194 0.338 0.530

ETH-USD 0.356 0.202 0.198 0.339 0.536

XRP-USD 0.351 0.214 0.230 0.374 0.566
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(c) CH-plane: time window 𝑡𝑤 = 6 months

Figure 3: Complexity Entropy causality plane (CH-plane) of

cryptocurrencies time-series (LTC-USD, BNB-USD, BTC-USD,

ETH-USD, XRP-USD) compared to different types of noises:

white, 1/𝑓 (pink), 1/𝑓 2 (Brownian), and 1/𝑓 5/2, computed us-

ing different time windows settings. All the cryptocurrencies

lie on the dashed line characterizing the colored noises. As

the time window shortens, the cryptocurrency data increas-

ingly align with the position of white noise.

The PSD curves shown in Fig. 4 are computed by using the

whole available data time range, i.e., from 2020-07-03 to 2023-12-21.

The plot corroborates the similarity of the cryptocurrency time-

series to 1/𝑓 2 (Brownian) noise whose exponent is represented

by the full black reference line. In addition, the analysis was ex-

tended to shorter time windows, i.e. 𝑡𝑤 = 3 years, 𝑡𝑤 = 1 year, and

𝑡𝑤 = 6 months, as well. Interestingly, the spectral characteristics of

the cryptocurrencies remain consistent, i.e., the PSD consistently

follows the power law decay exponent of the Brownian motion,

regardless of the time window. The plot of the PSD for the other

time windows is not reported here for brevity.
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Figure 4: Power Spectral Density (PSD) plots of the 5 cryp-

tocurrency univariate time-series (LTC-USD, BNB-USD, BTC-

USD, ETH-USD, XRP-USD) computed using the whole avail-

able data time range (from2020-07-03 to 2023-12-21). The PSD

plots shows that cryptocurrency time-series follow a power-

law distribution comparable to Brownian noise, whose expo-

nent is indicated by the full black reference line.

4.2 Model performances

By examining Tables 3a, 3b and 3c, several observations can be

made regarding the prediction accuracy of the considered models

across cryptocurrencies, time windows 𝑡𝑤 , and forecast horizons 𝑓ℎ .

Notably, as shown in Table 3, one of our core results is that statistical

approaches consistently outperform their ML and DL counterparts.

Focusing on the statistical approaches, models like AutoARIMA,

AutoETS, AutoCES, and TBATS did not significantly over-perform

the much simpler Naive models. In fact, despite the greater so-

phistication and theoretical guarantees of such models, the fitting

procedures of these advanced models resulted in average perfor-

mances that are not statistically distinguishable from those achieved

by the Naive models. The aggregated view in Table 4, where the

mean MAPE over all cryptocurrencies and all 𝑡𝑤 is reported, to-

gether with the corresponding standard deviations, substantiates

this result.

In contrast, the Prophet model resulted in much worse perfor-

mances compared to the other statistical methods, and in some
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Table 3: MAPE results for statistical and ML/DL models across five cryptocurrencies (LTC-USD, BNB-USD, BTC-USD, ETH-USD,

XRP-USD) for (a) 3-year, (b) 1-year, and (c) 6-month time windows, with forecast horizons of 1, 7, and 30 days. A key finding is

that statistical approaches consistently outperformML and DLmodels, with the exception of NBEATS, which shows competitive

but not consistently superior performance. Interestingly, sophisticated statistical models like AutoARIMA, AutoETS, AutoCES,

and TBATS did not significantly outperform simpler Naive models. DL models, despite their reputation for modeling complex

sequences, face challenges in cryptocurrency forecasting. As the time window shrinks, prediction errors for VanillaRNN and

LSTMmodels increase across all forecast horizons. Similarly, traditional ML algorithms like RandomForest and XGBModel

struggle to discern patterns amid the inherent noise and volatility.

(a)

Time Window 3 years

Dataset LTC-USD BNB-USD BTC-USD ETH-USD XRP-USD

Forecast Horizon 1 7 30 1 7 30 1 7 30 1 7 30 1 7 30

NaiveDrift 1.914 5.361 12.562 1.415 3.808 7.815 1.298 3.617 11.012 1.452 3.946 9.203 2.110 6.600 16.589

NaiveSeasonal 1.911 5.298 12.436 1.419 3.759 7.049 1.296 3.619 11.307 1.448 3.886 9.011 2.105 6.517 16.276

AutoARIMA 1.929 5.318 12.444 1.437 3.770 7.055 1.296 3.619 11.307 1.447 3.875 9.011 2.093 6.5 16.264

AutoETS 1.933 5.715 14.884 1.433 4.065 10.249 1.292 3.579 11.071 1.461 3.968 9.439 2.131 6.983 18.397

AutoCES 1.938 5.233 12.766 1.408 3.735 7.023 1.310 3.652 11.662 1.452 3.843 9.096 2.07 6.529 17.290

TBATS 1.912 5.294 12.429 1.410 3.832 7.685 1.293 3.618 11.310 1.447 3.880 9.011 2.094 6.506 16.267

Prophet 22.301 27.390 42.971 11.929 14.062 18.253 10.140 13.130 23.244 12.247 15.457 24.848 15.492 18.903 27.875

RandomForest 2.202 8.234 18.755 1.651 4.974 25.132 1.675 6.531 11.728 1.694 5.117 10.593 2.364 9.501 30.308

XGBModel 2.707 10.355 19.039 1.985 5.483 24.539 1.902 6.546 13.549 1.850 5.577 12.534 2.715 12.416 37.773

VanillaRNN 2.064 7.209 19.112 2.967 6.772 8.973 99.091 99.102 99.120 84.672 84.746 85.049 2.237 7.922 29.138

LSTM 2.195 7.461 19.425 2.564 7.541 9.226 99.765 99.789 99.794 93.190 93.211 93.349 2.333 8.359 31.029

NBEATS 2.717 7.730 16.043 2.023 5.680 23.357 1.875 4.801 15.742 2.006 5.512 12.853 3.393 13.202 32.761

(b)

Time Window 1 year

Dataset LTC-USD BNB-USD BTC-USD ETH-USD XRP-USD

Forecast Horizon 1 7 30 1 7 30 1 7 30 1 7 30 1 7 30

NaiveDrift 1.919 5.458 12.995 1.420 3.779 7.277 1.299 3.627 11.077 1.455 3.967 9.390 2.117 6.703 17.179

NaiveSeasonal 1.911 5.298 12.436 1.419 3.759 7.049 1.296 3.619 11.307 1.448 3.886 9.011 2.105 6.517 16.276

AutoARIMA 1.911 5.298 12.436 1.404 3.741 7.035 1.296 3.619 11.307 1.449 3.877 9.011 2.103 6.527 16.278

AutoETS 1.911 5.298 12.436 1.402 3.735 7.032 1.296 3.619 11.307 1.447 3.875 9.012 2.079 6.555 16.243

AutoCES 1.945 5.335 13.348 1.412 3.750 7.104 1.315 3.612 11.230 1.457 3.881 9.150 2.104 6.743 17.514

TBATS 1.914 5.306 12.271 1.429 4.067 9.189 1.293 3.595 10.605 1.44 3.903 9.226 2.071 6.606 17.082

Prophet 11.709 14.065 22.853 6.931 8.420 15.934 7.437 9.022 15.100 7.054 8.407 13.501 12.627 14.862 21.915

RandomForest 2.080 6.878 19.199 1.685 4.866 17.374 1.693 5.955 12.300 1.773 4.597 10.449 2.699 9.355 20.851

XGBModel 2.499 8.870 20.802 1.875 5.475 18.333 2.029 6.914 11.978 1.963 5.012 11.227 3.082 10.037 24.186

VanillaRNN 8.156 11.960 12.618 56.079 56.673 58.750 99.658 99.674 99.691 94.179 94.339 94.640 2.219 6.955 16.117

LSTM 8.217 10.302 13.364 77.060 78.361 79.712 99.912 99.929 99.936 98.403 98.613 98.772 2.127 6.824 17.304

NBEATS 2.573 7.270 16.216 2.015 4.593 9.293 1.744 4.741 13.307 1.835 4.727 11.594 3.283 9.125 22.532

(c)

Time Window 6 months

Dataset LTC-USD BNB-USD BTC-USD ETH-USD XRP-USD

Forecast Horizon 1 7 30 1 7 30 1 7 30 1 7 30 1 7 30

NaiveDrift 1.922 5.454 13.676 1.425 3.803 7.433 1.315 3.787 11.247 1.463 4.062 9.966 2.130 6.881 18.209

NaiveSeasonal 1.911 5.298 12.436 1.419 3.759 7.049 1.296 3.619 11.307 1.448 3.886 9.011 2.105 6.517 16.276

AutoARIMA 1.907 5.205 11.907 1.401 3.759 8.460 1.296 3.619 11.307 1.456 3.871 9.014 2.115 6.565 16.261

AutoETS 1.911 5.298 12.435 1.4 3.742 7.043 1.298 3.617 11.157 1.449 3.869 9.007 2.073 6.578 16.230

AutoCES 1.948 5.359 13.823 1.414 3.763 7.291 1.333 3.765 11.306 1.472 3.992 9.788 2.138 6.990 18.763

TBATS 2.005 6.319 14.243 1.471 3.809 8.267 1.315 3.784 10.292 1.487 4.378 10.124 2.088 6.631 16.286

Prophet 8.903 11.634 23.436 5.173 6.805 12.722 5.532 7.451 16.171 4.631 6.163 12.856 10.751 13.959 25.909

RandomForest 2.417 8.036 18.194 1.652 4.149 14.504 1.655 6.077 12.362 1.826 4.498 9.907 2.728 9.237 20.008

XGBModel 2.689 9.011 20.523 1.873 5.081 15.371 1.803 6.350 11.773 2.082 4.771 10.499 3.947 9.819 24.050

VanillaRNN 25.377 26.717 31.597 73.680 74.399 76.592 99.801 99.820 99.838 96.590 96.848 97.161 2.279 6.761 15.244

LSTM 27.644 28.832 33.609 86.521 87.064 88.554 99.949 99.966 99.975 99.096 99.380 99.550 2.408 6.637 18.355

NBEATS 2.736 6.877 15.221 1.782 4.293 9.635 1.847 5.061 12.649 1.984 4.599 10.543 3.854 10.144 21.714
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Table 4: Aggregated view of mean MAPE ± standard devi-

ation across all cryptocurrencies and time windows corre-

sponding to tables (a), (b) and (c) in Table 3, for statistical,

machine learning (ML), and deep learning (DL) models. This

view illustrates that while statistical approaches generally

outperformML and DLmethods, the complex statistical tech-

niques (AutoARIMA, AutoETS, AutoCES, and TBATS) show

no statistically significant improvement over Naive models,

as evidenced by the overlapping standard deviations.

Forecast Horizon 1 7 30

NaiveDrift 1.644 ± 0.328 4.723 ± 1.227 11.709 ± 3.496

NaiveSeasonal 1.636 ± 0.325 4.616 ± 1.166 11.216 ± 3.251

AutoARIMA 1.636 ± 0.326 4.611 ± 1.17 11.273 ± 3.128

AutoETS 1.634 ± 0.324 4.7 ± 1.245 11.729 ± 3.415

AutoCES 1.648 ± 0.326 4.679 ± 1.244 11.81 ± 3.807

TBATS 1.645 ± 0.321 4.768 ± 1.21 11.619 ± 3.064

Prophet 10.19 ± 4.614 12.649 ± 5.532 21.173 ± 7.865

RandomForest 1.986 ± 0.397 6.534 ± 1.903 16.778 ± 5.903

XGBModel 2.333 ± 0.606 7.448 ± 2.423 18.412 ± 7.345

VanillaRNN 49.937 ± 43.905 51.993 ± 41.825 56.243 ± 37.961

LSTM 53.426 ± 45.967 55.485 ± 43.899 60.13 ± 39.327

NBEATS 2.378 ± 0.679 6.557 ± 2.567 16.231 ± 6.4

cases, even compared to ML and DL models. This discrepancy can

be attributed to the specific use-cases Prophet is designed to ad-

dress, characterized by strong seasonal effects and holidays. Hence,

the high volatility and the absence of regular seasonal patterns in

the cryptocurrency markets present a challenging environment for

Prophet’s underlying assumptions and mechanisms.

DL models, renowned for their ability to model complex se-

quences and capture long-term dependencies, are often seen as

holding the potential of superior performance in time series fore-

casting. However, their application to univariate cryptocurrency

time series reveals inherent challenges. These models require sub-

stantial amounts of data to be trained effectively and are prone

to overfitting, especially when compared to the noise-dominated

nature of cryptocurrency data. These limitations become evident

when examining the MAPE across decreasing time windows, as

can be seen in Table 3. The results clearly indicate that as the

time window 𝑡𝑤 shrinks, the prediction error of VanillaRNN and

LSTM models increases, irrespective of the forecast horizon 𝑓ℎ . The

NBEATS model stands out as a notable exception. However, while it

delivers competitive prediction accuracy, its performance does not

statistically match the top statistical models. This unexpected result

underscores a critical insight: even advanced DL architectures may

struggle in domains characterized by high volatility and noise.

Akin to deep learning models, traditional ML algorithms like

RandomForest and XGBModel - often acclaimed for their capacity

to capture intricate non-linear relationships and maintain robust

generalization - underperform in univariate cryptocurrency fore-

casting. These models also encounter difficulty in discerning signif-

icant patterns amid the stochastic fluctuations and inherent noise

of cryptocurrency markets.

5 Discussion and Conclusion

Our study reveals that univariate forecasting of cryptocurrencies is

essentially comparable to pure noise forecasting. Simpler statistical

models are consistently comparable or outperform more complex

ML and DL models across various forecast horizons and time win-

dows in an extended time range from 2020-07-03 to 2023-12-21, for

five prominent cryptocurrencies, i.e. LTC-USD, BNB-USD, BTC-

USD, ETH-USD and XRP-USD. Complexity analysis using the CH-

plane and the Power Spectral Density (PSD) highlights the noisy

nature of cryptocurrency time-series, revealing high entropy, low

complexity, and PSD power law exponents comparable with those

of Brownian motion. These findings collectively demonstrate the

inherent stochastic nature of cryptocurrencies and the varying de-

grees of noise-like behavior they exhibit over different time scales.

These insights challenge the presence of predictable patterns in

cryptocurrency markets and suggest that their apparent complexity

may be largely attributed to noise. The resemblance to Brownian

motion implies that forecasting future prices based solely on histor-

ical data may be unfeasible. Likewise, the similarity to white noise

over shorter periods points to increased randomness and potential

challenges even in short-term forecasting.

This study challenges the conventional wisdom that increased

model complexity guarantees better performance. The inherent un-

predictability and rapid evolution of cryptocurrency markets pose

significant hurdles for deep learning and machine learning models.

These models, often acclaimed for their sophisticated designs, may

not consistently deliver superior performance across all contexts.

This aligns with the findings in [15], which observed that simple

forecasting methods can outperform more complex ones in cryp-

tocurrency markets. Our study invites researchers and practitioners

to reconsider their approach to model selection, emphasizing the

value of simple models for what concerns the ability to handle noise

and volatility.

However, it’s important to note that incorporating additional

covariates can significantly improve the forecasting accuracy of

cryptocurrency models. These covariates can be categorized into

past covariates, such as technical indicators and correlated time-

series data, and future covariates, including scheduled events and

macroeconomic forecasts. Past covariates may help mitigate noise

and complexity in the models, while future covariates can assist in

anticipating external influences on cryptocurrency markets. While

past covariates are generally easier to obtain and incorporate, fu-

ture covariates present some challenges. They are often difficult

to retrieve directly, and when forecasted rather than known with

certainty, they can introduce additional uncertainty into the model.

This observation is consistent with the findings of [22], which

demonstrated improved forecasting performance by integrating

additional market indicators and sentiment analysis. Similarly, [7]

showed that incorporating exogenous variables can enhance cryp-

tocurrency volatility forecasting.

In conclusion, our study highlights the importance of balancing

model complexity with the inherent noise and unpredictability in

cryptocurrency markets. While more sophisticated models may

offer potential benefits, the effectiveness of simpler models should

not be underestimated. Future research should focus on identifying
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the most relevant and impactful covariates for cryptocurrency fore-

casting, as well as developing methods to effectively incorporate

future covariates without introducing excessive uncertainty.
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