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AbstractÐThe research on the sixth-generation (6G) wireless
communications for the development of future mobile communi-
cation networks has been officially launched around the world.
6G networks face multifarious challenges, such as resource-
constrained mobile devices, difficult wireless resource manage-
ment, high complexity of heterogeneous network architectures,
explosive computing and storage requirements, privacy and se-
curity threats. To address these challenges, deploying blockchain
and artificial intelligence (AI) in 6G networks may realize new
breakthroughs in advancing network performances in terms of
security, privacy, efficiency, cost, and more. In this paper, we
provide a detailed survey of existing works on the application
of blockchain and AI to 6G wireless communications. More
specifically, we start with a brief overview of blockchain and
AI. Then, we mainly review the recent advances in the fusion of
blockchain and AI, and highlight the inevitable trend of deploying
both blockchain and AI in wireless communications. Further-
more, we extensively explore integrating blockchain and AI for
wireless communication systems, involving secure services and
Internet of Things (IoT) smart applications. Particularly, some
of the most talked-about key services based on blockchain and
AI are introduced, such as spectrum management, computation
allocation, content caching, and security and privacy. Moreover,
we also focus on some important IoT smart applications sup-
ported by blockchain and AI, covering smart healthcare, smart
transportation, smart grid, and unmanned aerial vehicles (UAVs).
Moreover, we thoroughly discuss operating frequencies, visions,
and requirements from the 6G perspective. We also analyze the
open issues and research challenges for the joint deployment of
blockchain and AI in 6G wireless communications. Lastly, based
on lots of existing meaningful works, this paper aims to provide
a comprehensive survey of blockchain and AI in 6G networks.
We hope this survey can shed new light on the research of this
newly emerging area and serve as a roadmap for future studies.

Index TermsÐBlockchain, AI, wireless communications, 6G
networks, secure services, IoT smart applications, spectrum
management, security and privacy, smart healthcare, UAVs

I. INTRODUCTION

From 2020, the fifth-generation (5G) wireless net-

works achieve large-scale commercial deployment worldwide.

Academia, industry, and governments are now engaged in
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research and development of the sixth-generation (6G) wire-

less communication technology to meet the demands of fu-

ture networks in 2030 and beyond [1]. Compared with 5G

networks, 6G networks will have ultra-high network speed,

ultra-low communication delay, and wider coverage depth.

6G networks will fully share ultra-high frequency wireless

spectrum resources such as millimeter waves, terahertz, and

light waves. 6G networks will also integrate technologies such

as terrestrial mobile communications, satellite Internet, and

microwave networks to form an integrated green network with

group collaboration of all things, intelligent data perception,

real-time security assessment, and coordinated coverage of

space and earth [2]±[4]. Facing the 6G era, the network

will usher in new application scenarios and new performance

requirements. In the 6G era, an air-space-ground integrated

network communication system will be built to realize a

ubiquitous network for full coverage and all scenarios [5].

However, diverse applications and communication scenarios,

ultra-heterogeneous network connections, and service require-

ments for extreme performance all place higher requirements

on the bandwidth, latency, security, connection density, and

flexibility of 6G networks [6]±[8].

In the 6G era, artificial intelligence (AI) [9] is becoming

more and more important. AI relies on mining big data

for training and learning, continuously enhancing computing

power to cope with higher transmission rates, and gaining

more flexibility through continuous learning. In the future,

6G networks need to deal with explosive data traffic growth

and massive device connections. Real-time management and

control of these massive data will result in high complexity

and latency overhead. Therefore, how to effectively perceive

service characteristics, accurately monitor and control network

resources, and dynamically allocate wireless resources has

become an important issue for 6G networks. The use of AI at

the application layer and network layer of 6G networks makes

the network more intelligent and automated, which will be a

necessary way to manage and control massive wireless big

data [10], [11]. In addition, 6G network supports large-scale

users, large-scale antennas, and multi-band hybrid transmis-

sion, so traditional physical layer transmission technologies

will face multiple challenges in performance, complexity, and

efficiency. This provides the possibility for AI technology to be

applied to the wireless physical layer [12], [13]. Notably, a 6G

white paper [14] released by the University of Oulu believed

that AI will play an important role in 6G networks. The report

of [15] also indicated that it is necessary to introduce AI

technology into complex network architectures in the future.
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Blockchain is another highly anticipated emerging technol-

ogy. In fact, blockchain is a technical system that integrates

various technologies such as chain data structure, point-to-

point transmission, distributed storage, consensus mechanism,

and encryption algorithm [16]. The performance index require-

ments of 6G networks, such as ultra-high peak rate, ultra-low

latency, ultra-high reliability, ultra-low energy consumption,

and seamless connection, make system security, data privacy,

sustainability, scalability, and other aspects subject to many

risks and challenges [17], [18]. Blockchain technology is an

important technical means to cope with these challenges, espe-

cially with the advantages of distributed network architecture,

intelligent node consensus, and smart contracts. The integrated

application of blockchain and 6G networks provide a safe,

intelligent, and efficient underlying technical support for the

realization of the 6G network vision [19], [20]. In particular,

6G white paper [14] pointed out that 6G network requires

an endogenous trust network, and blockchain technology may

play an important role in the 6G networks to deal with a

variety of complex new privacy challenges. Blockchain is a

potential solution for privacy protection of 6G networks [21].

Moreover, blockchain can provide a strong guarantee for 6G

networks to build a distributed, secure, and trusted transaction

environment.

Research institutions and operators worldwide are accelerat-

ing the development of the cross-integration between emerging

technologies such as blockchain and AI with 6G networks.

The IMT-2030 (6G) Promotion Group’s white paper proposes

various scenarios for the application of blockchain technology

in 6G networks, including dynamic spectrum management,

ubiquitous access management, edge computing, and so on.

China has established several international standard projects of

blockchain in ITU, such as the establishment of ªFramework

of blockchain of things as decentralized service platformº in

ITU-T SG20 and the ªReference framework for distributed

ledger technologiesº in ITU-T SG16. Sprint, an American op-

erator, has partnered with NXM Labs to launch a 5G connected

vehicle platform powered by blockchain technology. China

Mobile and Huobi China have created a ªblockchain + Internet

of Things (IoT)º identity authentication platform. Meanwhile,

3GPP specifically defines the network data analysis function,

aiming to provide a standard interface for the development and

application of AI models in wireless networks. The European

Telecommunications Standards Institute has also established

an industry standard working group to use AI for network

management, expecting to achieve a high-level autonomous

network with endogenous AI. The IMT-2030 (6G) Promotion

Group puts forward the 6G vision of ªIntelligent Internet of

Everything, Digital Twinº, pointing out that 6G will enable

the efficient and intelligent interconnection of all things.

A. Previous Survey Works and Motivations

AI model or algorithm is based on the trained intelligence

data. Meanwhile, blockchain is essentially a data storage

method, or ªhyper ledgerº, which embodies data intelligence

[52]. Consequently, these two technologies, which are both

closely related to data, can be effectively combined to com-

plement each other and achieve technological improvement

[37]±[39]. As a trusted platform, blockchain can improve

the authenticity, relevance, and validity of the data used by

AI. From the perspective of data, computing power, and

algorithms, blockchain improves the level of AI technology,

innovates AI collaboration models and computing paradigms,

and constructs a new AI ecosystem. With intelligent and

automatic characteristics, AI can promote the natural evolution

and data sorting of blockchain through the optimization and

simulation of AI algorithms. Additionally, AI can effectively

prevent the occurrence of blockchain node forks, can handle

the operation of the blockchain more effectively, and improve

efficiency intelligently. Most importantly, the close combina-

tion of blockchain and AI can promote and optimize various

services and applications and also can provide a reliable,

secure, and ultra-low latency intelligent network environment

for next-generation wireless communications. Accordingly, in

the future 6G networks, the research on the simultaneous

deployment of blockchain and AI is of positive significance.

Next, we briefly describe the existing survey on the adoption

of blockchain and AI in wireless communication systems. Re-

searchers integrated blockchain with wireless communications

to form secure and trusted mobile networks and services. In

[22]±[27], a large number of reviews on blockchain-supported

wireless communications have been published, broadly elabo-

rating the basic concepts, network architecture, enabling tech-

nologies, research challenges, and future research directions.

Moreover, the mutual integration of blockchain and AI has

also been investigated in detail by multiple studies [33]±

[41]. Most importantly, the disruptive integration of blockchain

and AI for wireless communications can greatly improve the

network performance for a variety of services and applications.

Many pieces of literature [42]±[51] have summarized and

reviewed the topic of joint blockchain and AI for wireless

communications. However, to the best of our knowledge, none

of the existing surveys have comprehensively investigated this

popular topic, especially few research emphasized the simul-

taneous deployment of blockchain and AI for next-generation

wireless communications. For example, the research of [46]

only briefly discussed the potential of the joint application of

blockchain and machine learning (ML) in wireless communi-

cation systems. Similarly, the work in [47] briefly reviewed

reinforcement learning (RL)-empowered blockchains applied

in Industrial IoT (IIoT) networks. The authors of [51] simply

investigated the benefits of adopting blockchain with ML

under the secure in-vehicle network. TABLE I displays a

straightforward comparison of our work with existing related

surveys.

B. Novelty and Contributions

Compared with the existing aforementioned works, our

survey provides a comprehensive analysis and outlook on the

current research progress of blockchain and AI for 6G wireless

communications. We hope that this survey has some reference

significance for carrying out more innovative research in this

promising field. The main contributions of this article can be

summarized as follows:

1) We briefly outline the basic knowledge of blockchain and

AI. First, the concept, characteristics, and categories of
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TABLE I. Comparison of our work with existing related research.

Research Work Year
Blockchain

for 5G/6G

AI for

5G/6G

Blockchain

for AI

AI for

Blockchain

Blockchain and

AI for 5G/6G
Key Technologies

Wang et al. [22] 2021 Yes No No No No Blockchain, RAN

Wu et al. [23] 2019 Yes No No No Limited Blockchain, IoT

Nguyen et al. [24] 2020 Yes No No No Limited Blockchain, IoT, SDN, NFV

Yue et al. [25] 2021 Yes No No No No Blockchain, DApps

Tahir et al. [26] 2020 Yes No No No No Blockchain, RAN, D2D, SDN

Bhat et al. [27] 2020 Yes No No No Limited Blockchain, IoT, MEC

Sharma et al. [28] 2021 Limited Yes No No No ML, DL, IoT, Blockchain

Sun et al. [29] 2020 Limited Yes No No No ML, FL, Blockchain

Rekkas et al. [30] 2021 No Yes No No No ML

Liu et al. [31] 2020 No Yes No No No ML, FL

Lin et al. [32] 2020 No Yes No No Limited AI, Blockchain

Salah et al. [33] 2019 No No Yes No No Blockchain, AI

Shafay et al. [34] 2022 No No Yes No No Blockchain, DL, ML, FL

Wang et al. [35] 2021 No No Yes No No Blockchain, AI

Xing et al. [36] 2018 No No No Yes No Blockchain, AI

Pandl et al. [37] 2020 No No Yes Yes No Blockchain, AI

Dinh et al. [38] 2018 No No Yes Yes No Blockchain, AI

Singh et al. [39] 2020 No No Yes Yes Limited Blockchain, AI, IoT

Hussain et al. [40] 2021 No No No Yes No Blockchain, AI

Yang et al. [41] 2022 No No Limited Limited No Blockchain, AI, Metaverse

Mohanta et al. [42] 2020 No No No No Limited Blockchain, AI, ML, IoT

Tagde et al. [43] 2021 Limited Limited No No Limited Blockchain, AI

Gill et al. [44] 2019 No No No No Limited Blockchain, AI, IoT

Dhar et al. [45] 2021 Limited No No No Limited Blockchain, AI, IoT

Liu et al. [46] 2020 Yes Yes Yes Yes Limited Blockchain, ML

Jameel et al. [47] 2020 No No No Limited Limited Blockchain, RL, IIoT

Wu et al. [48] 2021 No No No Limited Limited Blockchain, DRL, IoT

Miglani et al. [49] 2021 No No Yes Yes Limited Blockchain, ML, DL, RL, FL

El Azzaoui et al. [50] 2020 Yes Yes No No Limited Blockchain, AI, IoT

Dibaei et al. [51] 2022 Limited Limited No No Limited Blockchain, ML, DL

Our Work 2023 Yes Yes Yes Yes Yes Blockchain, AI, IoT

blockchain and AI are introduced. Then, we separately

discuss the classic applications of blockchain and AI for

wireless communication systems.

2) We systematically summarize the integration of

blockchain and AI from two directions: blockchain-

assisted AI and AI-assisted blockchain. Furthermore, we

also emphasize the advantages of integrating blockchain

and AI for wireless communication systems.

3) We deeply elaborate on the latest developments of com-

bining blockchain and AI in 6G secure services. We

specifically focus on some of the most popular 6G secure

services, such as spectrum management, computation

allocation, content caching, and security and privacy.

4) We review the latest achievements of joint blockchain and

AI in 6G IoT smart applications. We extensively discuss

some important 6G IoT smart applications, including

smart healthcare, smart transportation, smart grid, and

unmanned aerial vehicle (UAV).

5) On the basis of the comprehensive survey, we thoroughly

discuss operating frequencies, visions, and requirements

from the 6G perspective. We also propose some open

issues and research challenges that need to be resolved

for the applications of blockchain and AI to 6G wireless

communications, and summarize several future research

directions.

C. Outline of the Survey

The outline of this article is presented in Fig. 1. The

remainder of this survey is organized as follows. Section II-A

provides an overview of blockchain, including the concept,

characteristics, categories, and representative applications in

wireless communications. In Section II-B, we describe an

overview of AI, taking into account the concept, character-

istics, categories, and typical applications in wireless com-

munications. In Section II-C, we discuss the mutual fusion

of blockchain and AI, and emphasize the abundant benefits

of this fusion for wireless communication systems. Section

III presents the integration of blockchain and AI for wire-

less communications, covering secure services and IoT smart

applications. Some open issues and research challenges are

discussed in Section IV, and the future work is also addressed.

Finally, we conclude the main works of the survey in Section

V. The major acronyms used in this paper are summarized in

TABLE II.

II. BACKGROUND OF BLOCKCHAIN AND AI

A. An Overview of Blockchain

1) Concept of Blockchain: The concept of blockchain was

first mentioned in the Bitcoin white paper written by S.

Nakamoto [53], marking the birth of blockchain 1.0. Ethereum

based on smart contracts means the arrival of the blockchain

2.0 era [54]. Blockchain 3.0 emphasizes its application to

all aspects of society. Blockchain is essentially a distributed

super-accounting ledger [55]. This digital ledger guarantees
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Section I: Introduction

Blockchain 6GAI

ContributionsMotivations

Section II: Background of Blockchain and AI

 
An Overview of Blockchain

Section III: Integration of Blockchain and AI for 

Wireless Communications

Section IV: Open Issues, Research Challenges, and Future Work

Section V: Conclusion

Towards Blockchain Towards AI

Towards Blockchain- and AI-assisted Wireless Communications

Future Work

An Overview of AI

 Integration of Blockchain and AI

Spectrum Management 

Computation Allocation

Content Caching

Security and Privacy

Smart Healthcare

Smart Grid

Smart Transportation

UAV

6G Secure Services 6G IoT Smart Applications

Blockchain for Wireless Communications AI for Wireless Communications

Blockchain for AI AI for Blockchain

Motivations of Integration of Blockchain and AI for 6G

Analysis of Operating Frequencies, Visions, and Requirements from the 6G 

Perspective

Fig. 1. Outline of the paper.

data security through encryption algorithms and consensus

mechanisms. Over time, the past transaction records on the

blockchain ledger will not be deleted and cannot be tampered

with. The blockchain network consists of multiple peer nodes,

and these nodes do not need to trust each other. Each node

independently maintains a copy of the global ledger. The

transaction data in the ledger is encapsulated by blocks. The

new block will be added to the end of the previous block in

the form of a linked list, so this accounting ledger is called

ªblockchainº [56]. Taking bitcoin as an example, the typical

block structure is shown in Fig. 2. Each block is divided into

two parts: block header and block body. The block body stores

the verified transaction data. The block header contains the

version, hash value of the previous block, hash value of the

current block, timestamp, difficulty value, nonce, and Merkle

root.

In the blockchain system, the consensus algorithm ensures

that each node can maintain the same transaction content and

sequence, which is the core component of the blockchain net-

work [57]. Currently, the widely used and common consensus

algorithms are as follows: Proof of Work (PoW) [53], Proof

of Stake (PoS) [58], Delegated Proof of Stake (DPoS) [59],

and Practical Byzantine Fault Tolerance (PBFT) [60]. PoW

introduces distributed node computing power competition to

maintain data consistency and consensus security. The core

idea of PoS is that the node with the highest stake obtains

the accounting right of the block. DPoS elects representatives

through shareholder voting to get the right to keep accounts.
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TABLE II. List of major acronyms.

Acronyms Definitions

AI Artificial Intelligence

6G Sixth-Generation

IoT Internet of Things

IIoT Industrial Internet of Things

UAV Unmanned Aerial Vehicle

PoW Proof of Work

PoS Proof of Stake

DPoS Delegated Proof of Stake

PBFT Practical Byzantine Fault Tolerance

P2P Peer-to-Peer

MBS Macro Base Station

MEC Mobile Edge Computing

ML Machine Learning

DL Deep Learning

RL Reinforcement Learning

FL Federated Learning

DRL Deep Reinforcement Learning

KNN K-Nearest Neighbor

DNN Deep Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

GAN Generative Adversarial Network

SGD Stochastic Gradient Descent

CSI Channel State Information

FDM Frequency Division Multiplexing

LSTM Long Short-Term Memory

MIMO Multiple-Input Multiple-Output

RF Radio Frequency

MMSE Minimum Mean Square Error

AMP Approximate Message Passing

SDN Software-Defined Networking

RAN Radio Access Network

NFV Network Function Virtualization

DApps Decentralized Applications

D2D Device-to-Device

BP Belief Propagation

RSU Road Side Unit

HDPC High Density Parity Check

LEO Low Earth Orbit

PBFT sorts the request through the leader node, the follower

node responds to the request, and the response result of most

nodes is the final result. In addition, there is no perfect

consensus protocol, because the adopted consensus protocol

needs to be matched according to the type of blockchain

system used. These algorithms have their own advantages but

also have their own shortcomings, as presented in TABLE III.

Since blockchain systems run in the Peer-to-Peer (P2P)

network where nodes do not trust each other, the initiated

transaction needs to be completed under the witness of all

nodes in the network. The transaction execution process of the

blockchain is as follows. Specifically, the node first randomly

generates its own private key and public key and constructs a

transaction through a wallet or script tool, and then uses its

own private key to sign the transaction. The signed transac-

tion is propagated between neighbor nodes through the P2P

network. Then, the node receiving the transaction verifies the

legality of the transaction, and the miner digs out a new

block according to the consensus algorithm. Next, the miners

broadcast the new block to other nodes through the P2P

network. Other miners verify the legitimacy of the new block

to decide to discard or add to the local chain. After confirming

the new block through the nodes of the whole network, this

indicates that the new transaction is transferred successfully.

2) Characteristics of Blockchain: The development of

blockchain technology has formed a relatively complete tech-

nology stack. Blockchain has been widely concerned and stud-

ied because of its important characteristics: decentralization,

non-tampering, traceability, and anonymity [23].

Decentralization: Blockchain technology is to complete

data interaction without relying on any third-party intermedi-

aries or institutions. Compared with the centralized network,

the bottom layer of blockchains adopts the P2P network

architecture. In the blockchain network, there is no traditional

central server to process data recording, storage, and updating.

Every node is equal, and the data maintenance of the entire

blockchain network is jointly participated by all nodes. In

addition, the withdrawal of any node will not affect the

operation of the entire system, and the blockchain network

has strong robustness.

Non-Tampering: Once the transaction data is packaged

on the chain by miner nodes and permanently stored in the

blockchain to form an immutable historical ledger. By storing

the hash value of the previous block in each block, the

blocks are connected back and forth to form a chain structure.

This special chained data structure enables all blocks storing

transaction data to be added to the end of the blockchain

in chronological order. The malicious node wants to tamper

with the data, which inevitably causes the hash value of the

current block and all subsequent blocks to change, leading

to the collapse of the chain structure. Therefore, the cost of

data tampering becomes extremely high, making it almost

impossible to modify the blockchain.

Traceability: In blockchain networks, all transactions are

public and any node can get a record of all transactions. Except

for the encrypted private information of both parties to the

transaction, all data on the blockchain can be queried through

public interfaces. Blockchain uses the chain block structure

with a timestamp to store data, resulting in adding a time

dimension to data. Each transaction on the block is connected

to two adjacent blocks through cryptographic methods, which

guarantees that users can trace the source of any transaction.

Anonymity: Since the nodes in the blockchain network do

not need to trust each other, there is no need to disclose the

identity between the nodes. This ensures the anonymity of

each participating node in the blockchain system and protects

the privacy of the nodes. Nodes can conduct transactions

without knowing the identity of the other party. Both nodes

of the transaction only need to publish their own addresses

to communicate with each other. In the blockchain network,

nodes use asymmetric encryption technology to build trust

between nodes in an anonymous environment.

3) Categories of Blockchain: According to different ap-

plication scenarios, blockchains are classified into public

blockchain, consortium blockchain, and private blockchain

[46].

Public Blockchain: The public blockchain is a completely

decentralized blockchain [61], and any user can join the

blockchain network. There is no official organization, man-

agement agency, and no central server. Participating nodes can

freely enter and exit the network without being controlled.
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Block  Header
Previous

Block

Next 

Block

Genesis 

Block

  Version: the relevant version information of the software and protocol

  Nonce: the random number users to implement the mining mechanism

  Previous Block Hash: the hash value of the previous block

  Current Block Hash: the hash value of the current block

  Timestamp: the creation time of the block

  Difficulty Value: the difficulty target of mining (dynamic change)

  Merkle Root: the root of the Merkle tree, which is calculated level by 

  level from the hash values ​​of all transactions

  TX: Transaction 

. . .

Merkle Tree

Version Nonce

Previous Block Hash Current Block Hash

Timestamp Difficulty Value

Merkle Root

Hash(1,2) Hash(3,4)

Hash 1 Hash 2 Hash 3 Hash 4

TX 1 TX 2 TX 3 TX 4

Block  Body

Fig. 2. The structure of blocks.

Private Blockchain: The private blockchain is fully central-

ized [23], and only authorized and trusted nodes can join the

blockchain network. All nodes in the network are controlled by

an organization. The operating rules and consensus mechanism

of the system are determined by the organization itself.

Consortium Blockchain: The consortium blockchain is a

partially decentralized blockchain [62] that is jointly main-

tained by multiple companies or organizations. This type of

blockchain is between the public blockchain and the private

blockchain and has the characteristics of multi-center or partial

decentralization. Only members belonging to the alliance can

generate transactions or view blockchain information.

According to the way of trust construction in different

scenarios, the blockchain can also be divided into a permis-

sionless blockchain and a permissioned blockchain [24]. The

permissionless blockchain is also called the public blockchain,

which is a completely open blockchain. That is, anyone can

join the network and participate in the complete consensus

accounting process. The permissioned blockchain is a semi-

open blockchain. Only designated members can join the net-

work, and each member has different rights to participate.

The permission chain often establishes a trust relationship

by issuing identity certificates. This blockchain has partial

decentralization characteristics, which is more efficient than

permissionless blockchains. Private blockchains and consor-

tium blockchains belong to permission chains. The compar-

ison of the characteristics of the above-mentioned different

blockchains is shown in TABLE IV.

4) Blockchain for Wireless Communications: Blockchain

technology naturally has many advantages such as decen-

tralization, traceability, distribution, and tamper resistance.

Therefore, researchers expect to apply the blockchain to all

levels of the wireless communication system, which will

achieve a substantial increase in system performance and a

true sense of the connection of everything [24]. Blockchain

can provide traceable communication for 6G networks, which

not only facilitates network administrators to query historical

resource conditions at any time, but also reduces malicious

users’ behavior of fabricating resource usage. In addition, the

blockchain uses multi-party consensus mechanisms to record

the interactions between users, so as to ensure the fairness

and openness of all interactions. The integration of blockchain

and 6G will provide a strong security guarantee for the

construction of a safe and credible communication ecosystem.

So far, the research on the integration of blockchain and 6G

network mainly involves two main aspects [25]: blockchain-

enabled 6G secure services [63]±[91] and blockchain-assisted

6G Internet of Things (IoT) smart applications [92]±[103].

Secure Services: The research on the blockchain-enabled

6G secure services mainly involves spectrum sharing [71]±

[80], computing and storage [81]±[88], interference manage-

ment [89]±[91], and so on. Take blockchain based spectrum

sharing as an example, the authors of [71] and [72] proposed

a blockchain-based verification and access control protocol to

complete the spectrum sharing between primary and secondary

users. The works in [73], [74] proposed a blockchain-based

spectrum sensing as a service solution. Here, the smart contract

is mainly responsible for the following functions: 1) Schedul-

ing the spectrum allocation between users and the helper to

maximize system revenue; 2) Identifying whether the helper

is a malicious node, and ensuring the security of spectrum

sharing. [75] discussed the application of blockchain in dif-

ferent spectrum access scenarios and analyzed the advantages

and disadvantages of different spectrum sharing mechanisms.

Based on the consortium blockchain, a secure spectrum trading

and sharing scheme for drone-assisted communication systems

was contrived in [76]. To solve the issue of privacy risk in

spectrum sharing, [77] proposed a trusted framework found
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TABLE III. Comparison of four typical consensus algorithms.

Consensus

Algorithm
Security Decentralization Fork

Resource

Consumption

Transaction Confir

mation Time

Transaction

Throughput

Network

Scale

Typical Application

System

PoW High Higher Easy Large Long Small Large Bitcoin

PoS Higher Higher Easy General General Small Large Peercoin

DPoS General Low Hard Small Short General Large Bitshares

PBFT General General Hard Small Short General Small Hyperleder

TABLE IV. Comparison of different blockchains.

Type of

Blockchain

Public Blockchain

(Permissionless Blockchain)

Private Blockchain

(Permissioned Blockchain)

Consortium Blockchain

(Permissioned Blockchain)

Degree of Centralization Decentralization Centralization Multi-centralization

Participant Anyone Designated member Alliance member

Bookkeeper All participants Self-determined Participants decided after negotiation

Advantage High credibility High security & Low latency Good scalability

Disadvantage High latency & Low efficiency Limited nodes & Centralization Have a trust issue

Typical Application

Scenarios
Bitcoin, Ethereum Hyperledger Centralized Exchange

on blockchain entitled TrustSAS for dynamic spectrum access.

The work in [78] introduced a smart network architecture,

which uses smart contracts to handle unlicensed spectrum

sharing between operators and users. The authors of [79]

proposed a blockchain-based radio service model, which can

reduce the management cost of dynamic access systems.

For wireless downlink communication systems with multiple

mobile operators, the work in [80] delineated a blockchain-

based dynamic spectrum acquisition scheme.

The computing and storage capabilities of edge comput-

ing are valuable network resources, which can be efficiently

managed through the blockchain. To solve the problem of

low efficiency of computing resource transactions, in the

blockchain-based edge-assisted IoT network, the work in [81]

considered using the credit-based payment for fast computing

resource transactions. The work in [82] proposed a blockchain-

based multi-layer computing offloading architecture, which

enhances the collaboration between users in sharing comput-

ing resources. In the blockchain-empowered multi-task cross-

server edge computing scenario, the authors of [83] proposed

two double auction mechanisms to drive end users and edge

servers to securely allocate and trade resources. The works of

[84] and [85] applied the consortium blockchain and smart

contracts to the vehicle edge computing network for resource

trading, data storage, and data sharing, and to defend against

malicious behaviors of vehicles. Blockchain was used to con-

struct an attribute-based encryption scheme for secure storage

and sharing of electronic medical records in [86]. The authors

of [87] designed a blockchain-enabled arbitrable remote data

auditing scheme to provide reliable network storage services.

To deal with the privacy issues in content-centric mobile

networks, the study in [88] proposed a secure and efficient

blockchain-inspired encrypted cloud storage solution.

The dense deployment of 6G networks will cause serious

interference problems, so the use of blockchain for interference

management is also a very important topic. The work in [89]

described a greedy distributed algorithm, using the blockchain

currency mechanism and coordination protocol. This algorithm

can realize the optimal information distribution achieved by

the traditional central controller before, and eliminate the

interference between users. The authors of [90] analyzed

the interference problem between transaction nodes in the

blockchain-based IoT network, and derived the probability

density function of the signal to interference plus noise ratio

between IoT nodes and full nodes. The blockchain-based full

node deployment solution can ensure a high transaction suc-

cess rate and overall communication throughput, and protect

the IoT network from security threats. In the blockchain-

based femtocell network, to avoid excessive interference from

femtocell users to the macro base station (MBS), the MBS set

a price for the interference generated by the femtocell user

in [91]. Femtocell users determined their transmission power

and payment fees according to the modeled Stackelberg game.

Blockchain enabled the femtocell network to reliably make

payments without the involvement of intermediaries.

IoT Smart Applications: Blockchain has also been intro-

duced into many IoT smart application systems, such as smart

healthcare [92]±[94], smart transportation [95]±[97], smart

grid [98]±[100], UAV [101]±[103], and so on. For example,

the authors of [92] described a blockchain-energized patient-

centric electronic medical record management architecture,

and completed the prototype implementation of this architec-

ture on the Hyperledger platform. The work in [93] proposed

a mobile edge computing (MEC)- and blockchain-based dis-

tributed healthcare architecture for medical data offloading and

data sharing. In the hospital network, the traditional centralized

patient identity authentication method may cause problems

such as long time and high cost. To resolve these problems, the

authors of [94] designed a distributed patient authentication

method using blockchain. A blockchain-enabled electricity

trading scheme between vehicles was proposed in [95]. To

alleviate the problem of incomplete information sharing, the

Bayesian game was also used to price electricity. The study of

[96] delineated a blockchain storage system, which supports

incremental data updates of vehicles. This system used mul-

tiple technologies such as data partitioning, smart contracts,

and redundant backups. To deal with the security threats of

the Internet of Vehicles, [97] considered a blockchain-assisted

certificateless key agreement protocol, which has high security

and low communication and computing costs.
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The integration of blockchain into smart grid and UAV is

also a hot topic. In the smart grid system based on edge

computing, to realize the private and secure communication

between grid terminals and edge servers, the work of [98]

introduced a blockchain-enabled anonymous authentication

and key agreement protocol. In the IoT-supported smart grid

system, the data of smart meters can be safely transmitted

to service providers through the private blockchain-based

access control protocol proposed in [99]. The work in [100]

introduced a blockchain-empowered security demand response

management scheme, which processes energy transaction re-

quests generated in the smart grid system. The authors of

[101] proposed a blockchain-energized multi-party authenti-

cation scheme, which can provide secure point-to-point wire-

less communication and reliable group communication for

UAV networks. Under the heterogeneous UAV flight ad hoc

network, the study of [102] drew up a blockchain-based

distributed key management scheme, which includes four

modules: cluster key distribution, key updating, cluster UAV

migration, and malicious UAV revocation. In order to solve the

security and privacy issues faced by energy micro-transactions,

[103] introduced a distributed and secure UAV-assisted radio

transmission architecture, which utilizes the directed acyclic

graph and consortium blockchain.

B. An Overview of AI

1) Concept of AI: Nowadays, AI has become a field with

numerous practical applications and active research topics,

and is booming [104]. It is difficult to give AI a scientific

definition as rigorous as a mathematical one. Until now, ªwhat

is AI ?º is still a debated issue in academia, and there is no

unanimously accepted statement. Professor N. J. Nisson of

Stanford University’s AI Research Center believes that ªAI is

the science of knowledge, that is, how to express knowledge,

how to acquire knowledge, and how to use knowledgeº [105].

Professor P. H. Winston of the Massachusetts Institute of

Technology holds that ªAI is the study of how to make

computers do intelligent jobs that only humans could do in the

pastº [106]. From the perspective of knowledge engineering,

Professor E. A. Feigenbaum of Stanford University considers

that ªAI is a knowledge information processing systemº [107].

In a word, AI is a comprehensive discipline, which integrates

many disciplines such as computer science, logic, biology, psy-

chology, philosophy, etc. AI has achieved remarkable results

in applications such as speech recognition, image processing,

natural language processing, automatic theorem proving, and

intelligent robots [108], [109].

In the early days of AI, problems that were very difficult

for human intelligence but relatively simple for computers
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were dealt with quickly. For example, some problems can

be described by a series of formal mathematical rules. The

real challenge for AI lies in solving tasks that are easy for

humans to perform but difficult to describe formally, such as

recognizing words spoken by people or faces in images. For

these problems, human beings can often solve them easily and

intuitively. In recent years, most of the major breakthroughs

in the field of AI can be summarized as the development and

application of ML technology. The relationship between AI

and ML is depicted in Fig. 3. ML provides a solution for

these relatively intuitive problems. This solution has its own

ability to acquire knowledge, that is, the ability to extract

patterns from raw data. Further, there is a key approach in

ML, which can improve computer systems from experience

and data. This approach allows computers to learn from

experience and understand the world in terms of a hierarchical

concept system, with each concept defined by its relationship

to some relatively simple concepts. By allowing computers to

acquire knowledge from experience, human beings can avoid

formally specifying all the knowledge they need. Hierarchical

concepts let computers construct simpler concepts to learn

complex concepts. Drawing a diagram representing how these

concepts build on top of each other, we obtain a ‘deep’ (many

layers) diagram. For this reason, we call this approach as deep

learning (DL) [109], [110]. ML can build AI systems running

in complex real-world environments. DL is a specific type of

ML with great power and flexibility. In DL, the big world can

be described as a nested hierarchical concept system. This

hierarchical concept system refers to the definition of com-

plex concepts by the connection between simpler concepts,

and the generalization from general abstraction to high-level

abstraction.

2) Characteristics of AI: In this subsection, we will discuss

some important characteristics of AI, including data driving,

uncertainty, environmental perception, and scalability.

Data Driving: AI gradually completes the technology from

artificial knowledge expression to big data-driven knowledge

learning. AI rarely needs to rely on manual engineering, so

it can easily take advantage of the increment in the amount

of available computation and data [111]. For example, a data-

driven ML network regards the function to be implemented as

an unknown black box, replaces it with an ML network, and

then relies on a large amount of training data to complete the

training from input to output.

Uncertainty: There is a lot of uncertainty since AI has

some similarities or differences compared with any other

discipline such as mathematics, physics, cognitive, and be-

havioral psychology. Most areas of AI do not develop like

traditional methods of mathematics, nor do they align with

general models of physics. There will always be connections

between AI and cognitive or behavioral psychology, but those

connections ignore the mathematical and engineering themes.

As a prescience, the framework of AI is not yet complete.

Environmental Perception: The AI system should be able

to generate the ability to perceive the external environment

with the help of sensors and other devices. AI can receive

various information from the environment through hearing,

vision, smell, and touch like humans, and generate necessary

reactions to external input such as text, voice, expressions,

and actions. These reactions even influence environmental or

human decision-making. Ideally, an AI system should have

certain adaptive characteristics and learning capabilities. That

is, AI has a certain ability to adaptively adjust parameters or

update optimization models with changes in the environment,

data, or tasks.

Scalability: Over time, the computer hardware and software

infrastructure for AI technology have improved, and the scale

of AI models has grown accordingly. AI has been solving

increasingly complex applications with increasing precision.

With the development of new learning algorithms and archi-

tectures developed for deep neural networks (DNNs), AI is

bound to have broader application prospects.

3) Categories of AI: As depicted in Fig. 3, we first in-

troduce the classification of AI. Then, we focus on several

important branches of ML in the AI field. According to the

classification of learning methods, ML can be divided into:

supervised learning, unsupervised learning, and RL. We also

discuss some typical network architecture in DL.

Supervised Learning: Supervised learning refers to train-

ing on labeled data to predict the type or value of new data

[111]. According to the different prediction results, supervised

learning can be divided into two categories: classification and

regression. In training, an objective function is usually given to

measure the error (or distance) between the output and ground

truth, and then its internal adjustable weights are modified

to reduce the error via gradient descent. To improve the

convergence speed and reduce the computational complexity,

the stochastic gradient descent (SGD) [112] method is often

used in practice. SGD randomly selects a sample to compute

the loss and gradient each time. Compared with more complex

optimization techniques, this simple process of SGD often

finds a good set of weights quickly. The common methods of

supervised learning are K-nearest neighbor (KNN), decision

tree, and logistic/linear regression.

Unsupervised Learning: Unsupervised learning [113] is to

do data mining without labels. One of the important functions

of unsupervised learning reflects in clustering, which is simply

to classify data according to different features without labels.

Typical methods of unsupervised learning include K-means

clustering and principal component analysis, etc. An important

premise of K-means clustering is that the difference between

data can be measured by Euclidean distance. If it cannot be

measured, it needs to be converted into a usable Euclidean

distance measure. Principal component analysis is a statistical

method. By using orthogonal transformation, the variables

with correlation are changed into variables without correlation.

The transformed variables are called principal components.

The basic idea is to replace the initially correlated indicators

with a set of independent comprehensive indicators.

Reinforcement Learning: RL [109], [114] is about obtain-

ing rewards by interacting with the environment. Moreover,

RL judges the quality of actions by the level of rewards

and then learns the optimal strategy. Agent perceives the

state information in the environment, searches for strategies,

and selects the optimal action. This causes a state change

and a return value to update the evaluation function. After
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TABLE V. Comparison of typical ML algorithms.

Learning Algorithms Characteristics Typical Methods

Supervised Learning Predict the type or value of new data by training with labeled data.
KNN, Decision tree,

Logistic/Linear regression

Unsupervised Learning Do data mining when the data has no labels.
K-means clustering,

Principal component analysis

Reinforcement Learning

A model consists of an Agent, which interacts with the environment.
The optimal policy is learned through a trial-and-error mechanism to

maximize long-term cumulative returns.
DRL

completing a learning process, enter the next round of learning

and training. The learning process is repeated cyclically and

iteratively, until the conditions of stop rule are met, and

then the learning is terminated. For large-scale station-action

pair, deep reinforcement learning (DRL) [115] is an end-

to-end perception and control system with strong generality.

The principle framework of DRL is represented in Fig. 3(d).

The DRL learning process can be described as: (1) At each

moment, the agent interacts with the environment to get a high-

dimensional state, and uses DL to perceive the state to obtain

a specific state feature representation; (2) The agent evaluates

the value function of each action based on the expected return,

and maps the current state to the corresponding action through

a certain policy; (3) The environment reacts to this action and

gets the next state. Through the continuous cycle of the above

process, the optimal policy to achieve the goal can be finally

obtained.

We summarize the characteristics and typical structures of

several algorithms of ML discussed above as shown in the

following TABLE V.

Basic Network Architecture of DL: The basic network

structure is the convolutional neural network (CNN) [116],

[117], which consists of an input layer, multiple convolutional

layers, multiple pooling layers, a fully connected layer, and an

output layer, as shown in Fig. 3(a). The convolutional layer and

the pooling layer are set alternately. In the convolutional layer,

each neuron of the convolutional kernel is locally connected

to its input, and weighted and summed with the local input

through the corresponding connection weight. Then, the bias

value is added to get the output value of the neuron. Because

this process is equivalent to the convolution process, it is

called CNN. CNN is easier to train and popularize than the

fully connected network between adjacent layers, and is widely

adopted in the field of computer vision.

The recurrent neural network (RNN) [118] can process one

element of the input sequence at a time. As shown in Fig. 3(b),

the RNN maintains a ªstate vectorº in its hidden units, which

implicitly contains historical information for all past elements

in the sequence. The output depends not only on the current

input, but also on the information available in past moments

or information available in future moments. With such special

structure, RNNs are capable of providing memory for neural

networks.

Additionally, the generative adversarial network (GAN)

[119] is also a typical DL network that aims to learn a

model capable of generating fake samples on real-distributed

datasets. The basic structure of GAN is shown in Fig. 3(c),

which includes a generator G and a discriminator D. Both the

generator and the discriminator can be implemented by DL

networks. The discriminator is used to distinguish the fake

samples generated by the generator from the real samples of

the actual dataset. The task of the generator is to generate

sample data such that the discriminator cannot distinguish

between real samples and fake samples. When the generator

produces samples that the discriminator cannot distinguish

from the real samples, training is balanced. The applications

of GAN in basic fields such as image generation, image

translation, and speech images are very rich.

4) AI for Wireless Communications: In this section, we

mainly describe the latest research progress of AI applied to

6G wireless communications. The combination of AI and 6G

networks mainly contains in physical layer and upper layer.

AI for Physical Layer: The main contents involve channel

estimation [120]±[124], signal detection [125]±[129], channel

state information (CSI) feedback and reconstruction [130]±

[134], channel decoding [135]±[139], and end-to-end wire-

less communications [140]±[144]. In massive multiple-input

multiple-output (MIMO) beam mmWave scenarios, channel

estimation is extremely challenging, especially in scenarios

where antenna arrays are dense and receivers are equipped

with limited radio frequency (RF) links. The work of [120]

pioneered channel estimation by using the DL-based method

in wireless energy transfer systems. In [120], the authors

developed an autoencoder-based channel estimation scheme,

where the encoder is used to design pilots and the decoder

is utilized to estimate the channel. The authors of [121]

proposed a DL-based super-resolution channel estimation

scheme in millimeter-wave massive MIMO systems. This

scheme utilizes DNN for beam direction-of-arrival estima-

tion. In contrast, there are some other DL-based channel

estimation schemes that combine traditional algorithms with

certain performance guarantees with DL algorithms. Refer-

ence [122] designed a learned denoising-based approximate

message passing (LDAMP) network. The LDAMP network

takes the channel matrix as a two-dimensional image as

input, and integrates denoising CNN into the iterative signal

reconstruction algorithm for channel estimation. To improve

the performance of sparse signal recovery, the authors of [123]

proposed a learned approximate message passing (LAMP)

network. LAMP directly expands the iterations of the AMP al-

gorithm into the corresponding hierarchical network structure,

whose linear transformation coefficients and nonlinear shrink-

age parameters are jointly optimized by DNN. Furthermore,

starting from the basic structure of the minimum mean square

error (MMSE) algorithm, the work of [124] developed a DL-

based channel estimator, in which the estimated channel vector
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consists of conditional Gaussian random variables with ran-

dom covariance matrices. To reduce the complexity of channel

estimation, an MMSE-based CNN network is proposed to

compensate for the error in [124].

The authors in [125] applied DNN to tackle the problem of

signal detection in orthogonal frequency division multiplexing

(FDM) systems. Different from traditional wireless communi-

cation, [125] regarded channel estimation and signal detection

as a whole, and directly uses DNN to realize the mapping

from the received signal to the original signal bits. The work

in [126] investigated the signal reconstruction problem of the

MIMO system, and proposed a signal detection algorithm

entitled Detection Network (DetNet). DetNet is based on the

maximum likelihood method by adding the gradient descent

algorithm to generate a DL network. Based on the orthogonal

AMP (OAMP) iterative algorithm combined with the DL

network, OAMP-Net was proposed in [127]. The purpose

of OAMP-Net is to add adjustable training parameters on

the basis of the original algorithm to further improve the

signal detection performance of the existing algorithm. With

the advantage of fewer trainable parameters, the model-driven

detection network [128] was designed to improve detection

performance by expanding a specific iterative detector and

adding some trainable parameters. In addition, an adaptive

signal detection method named JC-Net for massive MIMO

systems was proposed in [129]. JC-Net has a foundation for

the traditional Jacobi detector, adding trainable parameters to

improve the convergence speed and perform corresponding

soft projection. In FDM networks, the BS requires to attain

downlink CSI feedback to perform precoding and achieve per-

formance gains. However, there are many configured antennas

in massive MIMO systems, so the feedback overhead of the

complete CSI becomes extremely huge. The work of [130]

presented a CNN-based CSI perception and recovery mecha-

nism named CsiNet. Since then, DL-based CSI compression

techniques have attracted a lot of attention [131]±[134]. On

the basis of [130], the authors of [131] provided a real-

time long short-term memory (LSTM)-based CSI feedback

architecture entitled CsiNet-LSTM, which employs temporal

correlation to improve the feedback accuracy of time-varying

channels. CsiNet-LSTM can accomplish a trade-off between

compression ratio, CSI reconstruction quality, and complexity.

On the basis of the high correlation of amplitudes between

bidirectional channels in the delay domain, DualNet was

proposed in [132] to use uplink amplitude information to help

reconstruct downlink channel amplitudes. The CSI feedback

and reconstruction algorithms in [130]±[132] rely on a large

amount of data for offline training, and the network complexity

is high. The work of [133] focused on the complexity of

the neural network. The experimental results in [134] demon-

strated that the DL-based channel feedback framework can

reduce the air time overhead by an average of 73% and

improve the throughput by about 69% compared with the

802.11 feedback protocol.

The authors in [135] developed a DNN-based channel

decoding method. This paper draws two conclusions about the

application of DL to channel decoding: 1) Structured codes

such as polar codes are easier to learn than random codes;

2) For structured codes, DL networks can decode untrained

codewords. However, this proposed method is neither suitable

for random codes nor codewords with long code lengths, and

has great limitations. On the basis of the traditional polar code

iterative decoding algorithm, the work of [136] presented a

DL polar code decoding network that separates sub-blocks.

The decoding algorithm in [136] is a highly parallel decoding

algorithm. Compared with the decoding algorithm in [135], the

algorithm of [136] significantly reduced the number of training

times and the complexity of the network structure under

the condition of comparable performance. Reference [137]

conducted an iterative channel decoding algorithm: belief

propagation (BP)-CNN. The algorithm concatenates the CNN

with the standard BP decoder to estimate information bits in

a noisy environment. For high density parity check (HDPC)

codes, the performance of the BP algorithm is relatively poor.

Nachmani et al. successively proposed the BP-DNN algorithm

[138] and the BP-RNN algorithm [139], which combined the

DNN and RNN networks with BP algorithms to improve the

performance of BP algorithms applied to HDPC. Reference

[140] put forward an end-to-end wireless communication sys-

tem model, which explains the feasibility of replacing the pro-

cessing module of the physical layer by DNN. The authors of

[141] provided a differentiable channel computational model,

which can be used for supervised autoencoder training. Since

then, many non-modeled methods [142], [143] have been

developed based on synchronization-around methods, none of

which require any channel knowledge and can be directly

executed on real hardware. In [144], the authors treated the

communication system as an end-to-end DRL autoencoder.

This technique does not require any information about the

actual channel model.

AI for Upper Layer: In recent years, AI has been in-

troduced into the upper layers of wireless communications

to tackle various problems, thereby enabling near-optimal

network performance. For example, since artificial neural

networks have the approximation characteristics of universal

functions, [145] and [146] adopted a data-driven approach to

allow the training model to autonomously learn user access

and power allocation strategies. Supervised learning requires

predicting the labels of the training data, resulting in exces-

sive data preprocessing burden. So, from the perspective of

unsupervised learning, the authors of [147] leveraged a feed-

forward neural network to autonomously learn the optimal

power allocation. Bypassing channel estimation, the work in

[148] efficiently scheduled interfering links based only on the

geographic locations of transmitters and receivers via DL al-

gorithms. In multi-cell systems, reference [149] approximated

optimal link scheduling and power control through DNNs.

Specifically, a matching link schedule was estimated using

the deep Q-network, and then power was allocated to the

corresponding link schedule.

As a data-driven ML method, DRL can directly learn

dynamic environmental laws and obtain optimal decisions.

Therefore, DRL can endow the network with the ability to self-

optimize management according to the dynamic environment,

making intelligent communication possible. Next, we focus

on the application of DRL in the upper layer of wireless
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communications. For example, reference [150] considered a

power control problem in cognitive radio. Here, to improve

the spectrum usage rate, secondary users performed communi-

cation by occupying the spectrum of primary users. To satisfy

the service quality of primary and secondary users, the author

of [150] proposed a DRL-enabled power control scheme.

Reference [150] was aimed at the single-user power control

problem, which cannot be applied to multi-user scenarios.

To this end, the work of [151] discussed the problem of

multi-user power resource allocation in cellular networks,

where the goal was to maximize the weighted sum-rate of the

entire network. Moreover, [152] extended [151] to multi-user

device-to-device (D2D) communication scenarios. The authors

of [153] used DRL to analyze the user’s data request, and

replaced the file in the cache as per the user’s request rule. A

DRL-empowered computing resource allocation scheme was

presented in [154]. In this scheme, IoT devices adopted DRL

algorithms to determine the power of each computing task to

be executed locally, and a power of 0 meant that the computing

task is executed in MEC servers. In addition, references [155]±

[158] also successfully employed DRL algorithms in the joint

optimization problem of caching and computing resources,

indicating that DRL has a strong application prospect in

managing network resources.

In [159], DRL was used to realize intelligent horizontal

handover between BSs. The work of [160] further attempted

to combine access control and resource allocation, and con-

sidered the DRL algorithm to solve the joint optimization

problem of user access and channel allocation in multi-layer

BS cellular networks. As the size of the network escalates, the

probability of network failure also increases. The authors of

[161] attempted to apply DRL to network fault self-healing. To

enhance energy efficiency and reduce costs, wireless networks

need to dynamically turn BSs on and off according to user

traffic demands. In view of the dynamic randomness of traffic

demands, [162] proposed to apply DL to analyze and predict

the traffic of each BS, and then used DRL to control the switch

of BSs according to the predicted traffic. In addition to [162],

the work of [163] also introduced a DRL-supported intelligent

sleep strategy for BSs to reduce network energy consumption.

In sparsely populated areas, UAVs can be leveraged as air

BSs to serve terrestrial communication terminals. Considering

the coverage limitation of the UAV and the moving variation

of the air-to-ground channel, the authors in [164] discussed

to use DRL algorithms with deep Q-learning for deployment

planning of air BSs.

C. Integration of Blockchain and AI

In recent years, the frontier technologies of blockchain and

AI have aroused widespread attention and in-depth research in

academia and industry. Blockchain technology has the char-

acteristics of decentralization, anonymity, openness and trans-

parency, and immutability. However, the blockchain needs to

be improved urgently in terms of scalability, energy consump-

tion, and security. As a powerful analysis and decision-making

tool, AI can predict and analyze data in real-time scenarios

and make optimal decisions. Nevertheless, the centralized

structure of AI and its demand for security and credibility have

greatly limited the wide application of AI. Therefore, there is

complementary potential for the combination of blockchain
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and AI. As shown in Fig. 4, we respectively elaborate and

analyze from the two aspects of blockchain for AI and AI for

blockchain.

1) Blockchain for AI: From the perspective of AI tech-

nology, blockchain as a trusted platform can create a secure,

immutable, and distributed system for AI. In this secure sys-

tem, no third-party participation and management are required,

users trust each other and share data. Accordingly, based on the

huge and reliable data set, the accuracy of the agent’s decision-

making is improved. We introduce blockchain-driven AI from

some aspects below, including data management [165]±[168],

decentralized intelligence [169]±[172], security and privacy

[173]±[176], and efficiency and scalability [177]±[180].

Data Management: The massive amount of AI data lacks a

consolidated and efficient sharing mechanism and management

method. The poor maintainability of open-source data sets

leads to uneven data quality, and the data is not centralized

and unified. The distributed database of blockchain efficiently

collects, shares, and stores the data of each node, so that every

participant on the network can access the data. This can pro-

vide AI with broader data access and more efficient data mon-

etization mechanisms. For instance, to make the updating of

AI models more efficient, based on blockchain technology, the

authors of [165] proposed the novel configurable distributed

AI framework, where participants collaborated to construct

datasets and used smart contracts to host continuously updated

AI models. In order to break the data barriers between different

mobile operators, [166] designed a blockchain-empowered

data sharing framework and a Hyperledger-based prototype

system. This system utilized smart contract-based monitoring

and fine-grained data access control to create a safe and

reliable environment for data sharing. Using blockchain to help

AI manage trusted data, the work in [167] introduced a secure

large-scale Internet architecture called SecNet. The SecNet

can realize secure data storage, computing, and sharing, and

enhance AI with a large number of data sources. The work

in [168] demonstrated a blockchain-enabled joint framework

for efficient data acquisition and secure sharing. This proposed

framework used DRL to achieve the maximum amount of col-

lected data, and leveraged the Ethereum blockchain technology

to ensure the security and reliability of data sharing.

Decentralized Intelligence: Through AI algorithms, learn-

ing results and models can be obtained from massive data.

Due to the distribution of IoT devices or edge computing

devices and the data heterogeneity, the cooperation of multiple

devices is required to complete complex model training tasks.

That is, different devices need to share data for data analysis

and prediction. Local learning models can also be shared

across devices and then aggregated. Blockchain technology

can guarantee that AI completes the interaction of data or

models between devices in the decentralized environment. To

realize asynchronous cooperative computing among untrusted

nodes, the work in [169] developed a decentralized, privacy-

preserving, and secure computing paradigm, which adopted

various technical means such as blockchain, decentralized

learning, and homomorphic encryption. A blockchain-assisted

distributed secure multi-party learning architecture was pro-

posed in [170]. Specifically, the authors formulated two types

of Byzantine attacks, as well as elaborated ªoff-chainº and

ªon-chainº mining schemes. In response to the single point

of failure problem of federated learning (FL), the work in

[171] provided a decentralized FL scheme entitled ChainFL.

The ChainFL utilized blockchain to delegate the responsibility

of storing and aggregating models to nodes on the network

without requiring any central server. In edge AI-supported

IoT networks, to break knowledge silos, the authors of [172]

proposed a P2P knowledge payment sharing architecture,

which made use of the knowledge consortium blockchain to

ensure that knowledge management and market transactions

are safe and efficient. This knowledge consortium blockchain

included the new encrypted currency knowledge currency,

smart contracts, and new transaction consensus mechanism

proof.

Security and Privacy: For AI technology, the greater

amount of having data, the higher accuracy of its training

model. However, if a small part of this data has security

issues, the validity of the data will affect the system’s decision-

making accordingly and thus the overall performance of the

system. Fortunately, blockchain has many technologies such as

anonymity, immutability, interface access control, and signa-

ture authentication and authorization to ensure the security and

privacy of transaction data, and to provide quality assurance

for the data required for AI model training. The work in [173]

proposed a blockchain-authorized edge intelligence system,

which assured the security, privacy, latency, and efficiency

of edge device data. Here, the public blockchain guaranteed

the security and privacy of data of edge devices, while the

private blockchain ensured secure communication between

edge intelligent servers. The authors of [174] demonstrated

a distributed DL architecture named DeepChain. DeepChain

utilized the value-driven incentive mechanism of blockchain

to encourage parties to collaborate in DL model training and

share the obtained local gradients. Meanwhile, DeepChain

guaranteed the privacy of local gradients for each participant

and provided auditability for the entire training process. To

prevent malicious attacks on AI models, the work in [175]

introduced Biscotti, which was a fully decentralized P2P

large-scale multi-party learning scheme. The Biscotti adopted

blockchain and cryptographic primitives to coordinate the

privacy-preserving ML process among peer nodes. The authors

of [176] presented the blockchain-assisted asynchronous FL

(BAFL) architecture, where the blockchain ensured that model

data cannot be tampered with, and assured decentralized and

secure data storage, and asynchronous learning accelerates

global aggregation. The proposed BAFL guaranteed that each

device uploaded the local model whenever the global aggre-

gation can converge the global model faster.

Efficiency and Scalability: When using AI techniques,

such as DL, it is difficult for people to understand what is in

the black box and explain the decisions made by AI systems,

so AI cannot be verified or trusted. Furthermore, without

appropriate incentive mechanisms, various parties may be

reluctant to participate in data training. The above-mentioned

problems will reduce the efficiency and scalability of AI

systems. Blockchain can track every link in the data processing

and decision-making chain for explainable AI. Appropriate
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incentive mechanisms can also be introduced from blockchain.

The transparent and cost-effective incentive mechanism de-

sign can be implemented, which will greatly improve the

enthusiasm of all parties in AI systems to take part in the

training. A blockchain-based framework for more trustworthy

and explainable AI was presented in [177]. This framework

leveraged smart contracts to record and manage interactions, as

well as provided consensus for trusted oracles. The proposed

framework also addressed decentralized storage, registry, and

reputation supporting services. To obtain better trusted AI, the

authors of [178] designed a blockchain-enabled FL system,

which used the blockchain to track the source information

of the trained model. Aiming at the incentive mechanism

problem of FL, the work in [179] presented a reputation-

based miner selection scheme, and designed an efficient incen-

tive mechanism by adopting a multi-weight subjective logic

model to evaluate the user’s credit. The proposed scheme

also leveraged the consortium blockchain to achieve secure

reputation management for miners in a decentralized manner.

In [180], the authors described the FLChain framework based

on trust and incentive. The FLChain saved miners’ information

and verifiable training details for public audits. The incentive

mechanism of the FLChain encouraged honest and trustworthy

miners. Otherwise, malicious nodes will be punished, so as to

maintain a healthy and reliable public platform.

2) AI for Blockchain: From the perspective of blockchain

technology, its scalability and system energy consumption can

be optimized through AI algorithms. Using AI algorithms in

blockchain networks, security vulnerabilities brought about by

the implementation of smart contracts and consensus mecha-

nisms can be identified and detected. We will represent AI-

driven blockchain from four aspects below, including scala-

bility [181]±[184], energy consumption [185]±[188], security

and privacy [189]±[192], and intelligent decision [22], [193]±

[195].

Scalability: Currently, as the number of transactions in-

creasing significantly, scalability is the biggest barrier to

the widespread application of blockchain technology. In

blockchain systems, the core of scalability is to tackle the

problems of transaction throughput and transaction speed.

Due to the characteristics of decentralization and network-

wide broadcasting, each node on the blockchain will record

transactions generated by the entire network, leading to low ef-

ficiency. AI can introduce DRL or data sharding technology to

propose new solutions to blockchain scalability issues and im-

prove system efficiency. In [181], through the DRL algorithm,

the agent dynamically selected different consensus algorithms

and block production nodes, and adjusted the block size and

time interval. The agent found optimal parameters to improve

the scalability, while ensuring the decentralization, latency, and

security of blockchain networks. To obtain better throughput,

the authors of [182] adopted the deep Q network algorithm

to dynamically adjust the block size, time interval, and the

number of shards to seek the optimal related parameters,

while meeting the security of the system. The work in [183]

studied a DRL-enabled adaptive blockchain scheme, which

improved scalability and met the needs of different users.

Specifically, according to the service quality requirements of

users, the DRL algorithm selected the most suitable consensus

protocol for blockchain systems. To overcome the limitations

of existing blockchain static sharding, [184] introduced a

DRL-based dynamic sharding blockchain framework called

SkyChain. In the dynamic environment of blockchain systems,

this presented SkyChain can dynamically adjust the resharding

interval, number of shards, and block size in order to maintain

a long-term balance between performance and security.

Energy Consumption: Blockchain mining requires a large

amount of computing power and electricity resources. At

present, Bitcoin consumes about 2.55 billion watts of electric-

ity every year, almost the same as the annual electricity con-

sumption of some small countries. If the energy consumption

problem cannot be solved well, the value of the blockchain

itself will be diluted. To avoid excessive consumption of

computing resources and energy resources in this mining

process, AI algorithms can understand the blockchain network

process and architecture, and explore a more effective consen-

sus mechanism, which can make transactions on blockchain

networks execute faster.

A Proof-of-Learning consensus protocol was formed by

combining ML algorithms in [185]. This Proof-of-Learning

protocol performed model training through ML of given tasks.

Then, the ranking was based on the minimum loss function

value. Finally, the optimal model parameters were selected

and verified by other mining nodes to achieve distributed

consensus. Through combining DL algorithms, the work of

[186] proposed a Proof-of-Deep-Learning consensus protocol,

which forced the agent to conduct DL model training, and

proposed the training model as a proof of effectiveness. Only

when an appropriate DL model was generated, can miners

reach the consensus and generate new blocks. In response to

the energy consumption problem in blockchain networks, the

authors of [187] introduced a Proof-of-Useful-Work energy-

saving consensus protocol. The proposed protocol required

training a DL model during the mining process, and mining

new blocks only when the performance of the training model

exceeded a given threshold. The work in [188] demonstrated

an AI-enabled node selection algorithm that exploited the

nearly complementary information of each node and relied

on a specially designed CNN to reach consensus. In order

to ensure the decentralization and security of the network,

dynamic thresholds were used to obtain super nodes and

random nodes.

Security and Privacy: The decentralized power of

blockchain may be at risk of abuse, especially since the smart

contracts and consensus mechanisms in blockchain technology

are vulnerable to malicious network attacks or tampering. As

more and more personal data is stored in blockchain systems,

data privacy protection becomes critical. We employ AI-

assisted methods to identify and detect security vulnerabilities,

greatly improving the security and privacy of blockchains.

As an illustration, the work of [189] learned by extracting

relevant features from user accounts and operation codes of a

large number of smart contracts, and used the ML algorithm

XGBoost to detect whether there is a potential Ponzi scheme

in the smart contract. Ponzi scheme is a classic investment

fraud, and it also has a blockchain-based form. The essence
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Fig. 5. Taxonomy of the integration of blockchain and AI for wireless communications.

of Ponzi is that the investment of new investors is the return of

old investors. On the Hyperledger Fabric blockchain platform

and with a relatively low tolerance for malicious activities,

the authors of [190] designed an external detection algorithm

based on supervised ML before the consensus protocol as

the consensus of the previous step. This proposed detection

algorithm verified the new data compatibility, and discarded

suspicious data to improve the network’s fault tolerance for

the second-step consensus. In blockchain-based systems, a

data fusion scheme based on collaborative clustering features

was represented in [191]. The data fusion scheme applied AI

algorithms to train and analyze data clusters to detect abnormal

intrusion behaviors. To effectively detect abnormal behavior of

blockchain systems, the work in [192] proposed an encoder-

decoder-based DL model, which was an unsupervised model

trained with aggregated information extracted by monitoring

blockchain transactions.

Intelligent Decision: With the rise of blockchain tech-

nology, more people turn to study blockchain-empowered

application projects. Investors want to predict some impor-

tant behaviors of blockchain systems, such as cryptocurrency

prices, transaction confirmation times, and blockchain forks.

We consider embedding AI algorithms into blockchain systems

and allowing AI to optimize or make decisions for the entire

system, which is more conducive to investors making correct

policies. In [22], without knowing the details of the blockchain

network model, a multi-dimensional RL algorithm was pro-

posed to solve the mining problem with the Markov decision

process. The designed algorithm can obtain the near-optimal

mining strategy solution in the time-varying blockchain net-

work. In both short-term (1 day and 7 days) and medium-

term (30 days and 90 days) time periods, the authors of

[193] employed classification and regression models of ML to

predict the trend of Bitcoin price. The results showed that the

proposed four types of ML models predicted the actual Bitcoin

price with a very low error rate. Applying ML, the work in

[194] demonstrated an Ethereum prediction model, which can

predict transaction execution times in Ethereum systems. The

transaction execution time refers to the time frame within

which a miner node accepts and includes a transaction in a

block. To reduce the huge risk and cost brought by the fork, the

work of [195] adopted an ML method to predict the blockchain

fork, and compared the prediction accuracy of the fork by four

well-known ML methods, namely K Near Neighbor, Naive

Bayes, Decision Tree, and Multilayer Perceptron.

3) Motivations of the Integration of Blockchain and AI for

Wireless Communications: Blockchain can establish a secure

and decentralized resource sharing environment. AI can solve

some problems with uncertain, time-varying, and complex

characteristics. As shown in TABLE VI, we summarize and

compare blockchain for 5G/6G, AI for 5G/6G, blockchain for

AI, and AI for blockchain. We conduct a critical and original

discussion of these existing solutions, highlighting the advan-

tages, disadvantages, and main findings of various solutions.

Although blockchain and AI are promising technologies to be

applied in 6G networks, there are still many challenges and

unresolved problems. Both blockchain and AI have attracted

significant attention recently. The combination of these two

technologies may further improve the performance of 6G net-

works. In the first place, to more systematically understand the

integration and application of blockchain and AI technologies

for 6G networks, we summarize the benefits of blockchain

for AI and the benefits of AI for blockchain, respectively. For

details, please refer to the above subsections: Section II-C1

and Section II-C2. Then, we briefly describe the benefits that

fusing blockchain and AI can bring to 6G networks.

On the one hand, blockchain can improve AI in terms

of data management, decentralized intelligence, security and

privacy, and efficiency and scalability. Firstly, blockchain

collects, shares, and stores data for AI, so that every participant
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TABLE VI. Comparison of existing solutions.

Solution Advantages Disadvantages Main Findings

Blockchain

for 5G/6G

[57]-[97]

The integration of blockchain and
6G will provide a strong security
guarantee for the construction of
a safe and credible communication
ecosystem.

When there are massive blockchain
applications and nodes communicat-
ing with each other, the 6G network
may face uncertain local network
congestion.

While blockchain poses challenges to
the stability of 6G networks, it can
also provide protection for the security
of 6G networks and increase the value
of data.

AI for

5G/6G

[112]-[156]

AI enhances the performance of
a specific module of 6G systems,
including improving accuracy and
reducing complexity, and also int-
egrates multiple communication
modules to break the existing mo-
dular communication architecture.

Inefficient data management schemes
and high overhead of information
exchange among communication par-
ticipants are key bottlenecks. Data
security and privacy issues are rece-
iving increasing attention.

6G network realizes interconnected
intelligence by supporting AI funct-
ions, and adopts a centralized network
architecture, which is vulnerable to
hacker attacks.

Blockchain

for AI

[157]-[172]

Blockchain can conduct a secure,
immutable, and distributed syst-
em for AI. Users trust each other
and share data. The performance
of AI algorithms and decision-
making are effectively upgraded.

The execution results of smart contracts
in blockchains are often deterministic.
While, the execution results of AI are
usually uncertain, random, and unpre-
dictable in most cases.

The contradiction between blockchain
and AI poses certain challenges for
AI embedded in blockchain to opti-
mize the execution decisions.

AI for

Blockchain

[173]-[187]

AI can enhance the performance
of blockchains in terms of scalab-
ility, energy consumption, securi-
ty and privacy, and intelligent
decision.

With the explosive growth of data in
AI-assisted blockchain systems, the
massive unlabeled and unclassified
datasets are intractable for AI training.

Using AI algorithms, the scalability and
energy consumption issues of blockchain
can be mitigated, but AI training also
faces challenges.

on the network can access the data. Blockchain-supported

methods can provide AI with more efficient data management

mechanisms and wider data access. Secondly, blockchain can

ensure that AI can complete the collaborative interaction

of data or models between devices in a decentralized en-

vironment. In addition, blockchain uses its own anonymity,

immutability, interface access control, signature authentication

and authorization, and other technologies to safeguard the

security and privacy of transaction data in the AI system.

Finally, blockchain can track every link in the data processing

and decision-making chain for explainable AI. Transparent

and cost-effective incentive mechanisms can also be designed,

which will effectively upgrade the efficiency and scalability of

AI systems.

On the other hand, AI can enhance the performance of

blockchains in terms of scalability, energy consumption, se-

curity and privacy, and intelligent decision. First of all, AI

can introduce DRL or data sharding technology, to propose

new solutions for blockchain scalability issues and ameliorate

system efficiency. Furthermore, in order to avoid the massive

resource consumption of blockchain, AI algorithms can dissect

the blockchain network process and architecture, as well as

explore a more effective AI-based consensus mechanism based

on AI, so that transactions on the blockchain can be executed

faster. Next, AI-assisted methods are used to identify and

detect security vulnerabilities, which remarkably augments

the security and privacy of blockchains. Ultimately, we can

consider embedding AI algorithms into blockchain systems

and letting AI optimize or make decisions for the entire

system, which is more conducive to investors making make

correct decisions.

According to the above analysis, the amalgamation of

blockchain and AI has complementary potential. Blockchain

can conduct a secure, immutable, and distributed system

for AI technologies. In this system, users trust each other

and share data. Based on a huge and reliable data set, the

performance of AI algorithms and decision-making can be

effectively upgraded. Using AI algorithms, the scalability and

energy consumption issues of blockchain can be mitigated,

and its security vulnerabilities can also be identified and

detected. The integration of AI and blockchain is not only

to enhance each other, but also to push and optimize various

services and applications for 6G scenarios in the process of

mutual promotion. In this case, a reliable, secure, and ultra-

low latency network environment can be provided for 6G

wireless communications. Consequently, the research on the

integration of blockchain and AI is extremely important and

worth expecting in 6G networks.

In this section, we have provided a comprehensive overview

of the fundamental concepts, characteristics, and categories

of blockchain and AI. We have also discussed the classic

applications of both technologies in wireless communication

systems. Then, we systematically summarized the integration

of blockchain and AI from two directions: blockchain-assisted

AI and AI-assisted blockchain. Furthermore, we analyzed

the advantages of integrating blockchain and AI for wireless

communication systems. Through this section, we have gained

valuable insights into the opportunities and challenges of

leveraging blockchain and AI in wireless communication sys-

tems. We have also recognized the importance of considering

different integration approaches and identifying suitable use

cases to maximize the potential of these technologies. Overall,

this section provides a solid foundation for further exploration

and analysis of the integration of blockchain and AI in wireless

communication systems.

III. INTEGRATION OF BLOCKCHAIN AND AI FOR

WIRELESS COMMUNICATIONS

For the existing problems of blockchain and AI, the inte-

gration of these two technologies can complement each other.

Facing the 6G era, the network will meet new application
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scenarios and new performance requirements. Diverse applica-

tions, communication scenarios, ultra-heterogeneous network

connections, and service requirements for extreme perfor-

mance all put forward higher demands on mobile commu-

nication networks [46]. The merger of blockchain and AI can

not only play to their respective advantages [196], [197], but

also better bring optimization and improvement to various

services and applications in 6G networks [47], [48], [198].

In this section, we will discuss broadly the applications of

merging blockchain and AI in 6G networks, including 6G

secure services [199]±[228] and 6G IoT smart applications

[229]±[261] as depicted in Fig. 5. The convergence of the

integration of blockchain and AI for wireless communications

is illustrated in Fig. 6. Furthermore, we thoroughly discuss

operating frequencies, visions, and requirements from the 6G

perspective.

A. Secure Services

As mentioned in the previous section, the combination of

blockchain and AI can not only promote each other, but also

provide better services. In 6G networks, wireless resources

such as spectrum, computing, and caching are some of the

most concerned services. The development of 6G networks

will bring explosive growth of user data, and security and

privacy services are also the keys to improving the overall

performance. In this subsection, we will focus on some key 6G

secure services, where blockchain and AI are simultaneously

applied, including spectrum management [199]±[204], com-

putation allocation [205]±[210], content caching [211]±[216],

and security and privacy [217]±[228]. TABLE VII presents an

analysis of the integration of blockchain and AI for secure

services.

1) Spectrum Management: Radio spectrum resources are

scarce resources. Spectrum is widely used by various radio

technologies and services, resulting in increasing demands

for spectrum resources in various industries and fields. Fac-

ing ever-increasing demands for radio spectrum, spectrum

management has never been more challenging. Given that

traditional fixed spectrum allocation strategies lead to in-

efficient spectrum usage, dynamic spectrum management is
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proposed as an encouraging approach to alleviate the spectrum

scarcity problem [262]. Blockchain and AI are two promising

enabling technologies for solving spectrum management is-

sues. Blockchain can be applied to spectrum auctions, which

improves security and decentralization, and reduces spec-

trum management costs. On the other hand, AI technologies

represented by DL and DRL are very powerful and can

automatically learn user behavior patterns or further make

optimal decisions for users. Through the use of AI, behaviors

such as users’ mobility and data/computing traffic can be

dynamically predicted, so as to optimize the allocation of

wireless resources.

In 5G beyond and 6G wireless communications, the authors

of [199] designed a blockchain- and AI-supported dynamic re-

source sharing architecture. The low-cost and low-complexity

hierarchical blockchain is an enabling platform for dynamic

resource sharing. AI is employed to optimize data management

in the process of dynamic resource sharing. The proposed

architecture in [199] can successfully implement dynamic

spectrum sharing. Simulation results show that DRL can effec-

tively maximize the user’s profit margin compared to the tradi-

tional Q-Learning algorithm and stochastic decision-making.

There is a competitive relationship between multiple operators.

Therefore, the operator’s spectrum utilization rate and infras-

tructure deployment efficiency are deeply low. 6G networks

will enable more flexible mobile network deployments through

spectrum and infrastructure sharing among operators. Under

the 6G network of multiple mobile operators, the work in

[200] developed a blockchain- and AI-empowered multi-plane

framework for open spectrum and infrastructure sharing. The

developed framework of [200] consists of user plane, infras-

tructure plane, operator plane, blockchain plane, and AI plane.

As a case study of the developed multi-plane framework, the

authors of [200] utilized deep RNN and blockchain technology

to design a workflow for dynamic spectrum management

among multiple operators. Simulation results indicate that the

designed intelligent dynamic spectrum management workflow

can provide more equitable bandwidth allocation for all users

compared with static and semi-intelligent workflows. The

authors in [201] proposed a general edge intelligent privacy-

preserving framework, which is integrated blockchain with FL

and can be specifically applied to spectrum resource sharing.

Spectrum sharing information is recorded in the blockchain

as a transaction, and consumers pay spectrum leasing fees

to providers through the blockchain. FL can not only learn

computational results from data, but also provide optimized

spectrum sharing strategies. In the digital twin edge network,

the work of [202] provided a permissioned blockchain-based

FL architecture. To improve the communication efficiency,

the authors of [202] also designed an efficient asynchronous

aggregation model and DRL-based algorithm to optimize user

scheduling and spectrum resource allocation. For the problem

of adaptive resource allocation, reference [203] presented a

blockchain-based MEC framework, where DRL method is

utilized to tackle the joint optimization problem of spectrum

resource allocation and block generation. In 6G networks,

reference [204] discussed the possibility of distributed ledger

technology and ML techniques to promote the coexistence of

licensed and unlicensed spectrum.

2) Computation Allocation: Computing resource is one

of the key resources in 6G wireless communications. Com-

bining blockchain and AI can allocate and offload com-

puting resources more efficiently. For instance, to facilitate

the scalability and flexibility of resources, SDNIIoT, which

integrates software-defined networking (SDN) into the IIoT,

was proposed in [205]. In large-scale distributed SDNIIoT

networks, the authors of [205] presented a novel permissioned

blockchain-energized consensus mechanism. This mechanism

synchronizes local views among different SDN controllers, and

finally achieves a consensus on the global view. To further

improve the throughput of the blockchain system, a joint

optimization problem of view change, access selection, and

computational resource allocation was constructed in [205].

To this end, a dueling deep Q-learning method was proposed

to deal with the joint problem. In the network environment

with more and more IoT devices, reference [206] introduced

a general system framework for blockchain-assisted edge

computing. In this framework, the complete procedure of

transactions between IoT side and edge nodes is specified step

by step. Furthermore, the authors of [206] provided a smart

contract for resource allocation in the private blockchain net-

work. The problem of allocating edge computing resources to

data service users was described as a continuous-time Markov

decision process. In [206], the designed smart contract adopted

the RL algorithm and asynchronous advantage actor-critic

algorithm to tackle the problem of edge computing resource

allocation. Compared with some traditional algorithms, the

proposed algorithm can distinguish multiple service quality

requirements of different service users, thereby ameliorating

the allocation efficiency of computing resources.

To enhance security resource management for edge users

in a distributed manner, the work of [207] demonstrated a

blockchain-guided offloading mode, which maximizes data

availability. This mode alleviates the non-probabilistic hard-

ness problem of data availability due to cooperative and

probabilistic data offloading. The data offloading process

occurs in the edge network assisted by blockchain. In this

data offloading mode, Naive Bayes’ learning was employed

to linearly classify offloaded and non-offloaded instances to

obstruct service delays and unnecessary backlogs. Aiming

at the security and offloading requirements in mobile edge-

cloud IoT networks, the work in [208] developed a secure

computation offloading scheme by combining blockchain and

DRL. In this scheme, the computing tasks of mobile IoT

devices can be offloaded to the cloud or edge servers. To up-

grade the security of data offloading, a trusted smart contract-

empowered access control mechanism was presented in [208].

This mechanism prevents cloud resources from being accessed

by illegal offloading devices. Again, for example, the authors

of [208] formulated the computation offloading, edge resource

allocation, bandwidth allocation, and smart contract cost as a

joint optimization problem. This joint problem can be solved

using an advanced DRL algorithm with a double-duling Q-

network and a optimal offloading strategy for all IoT devices

can be obtained. Under the vehicular fog computing network,

reference [209] introduced a blockchain- and ML-assisted task
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TABLE VII. Analysis of integration of blockchain and AI for secure services.

Taxonomy
Representative

References
Year Key Technologies Main Contributions

Spectrum Management

Hu et al. [199] 2021
Hierarchical blockchain,

DRL

Proposing a blockchain- and AI-supported dynamic res-
ource sharing architecture in 6G and beyond networks,
and DRL maximizes the user’s profit margin.

Maksymyuk et al.
[200]

2022
Blockchain, AI,

Deep RNN

A multi-plane framework based on blockchain and AI
for open spectrum and infrastructure sharing in the 6G
network with multiple mobile operators.

Lu et al. [202] 2020
Permissioned blockchain,

Digital twin, FL, DRL

Presenting a permissioned blockchain-based FL archi-
tecture in the digital twin edge network for user sche-
duling and spectrum resource allocation.

Guo et al. [203] 2020
Blockchain, MEC,

DRL

Building a blockchain-based MEC framework for ada-
ptive resource allocation, and DRL is utilized to tackle
the joint optimization problem of spectrum resource
allocation and block generation.

Computation Allocation

He et al. [206] 2021
Private blockchain,

RL, Edge computing

Providing a general system framework for blockchain-
assisted edge computing and a smart contract for co-
mputing resource allocation in the private blockchain
network.

Manogaran et al.
[207]

2021

Blockchain, Edge
computing, NaÈıve
Bayes’ learning

Demonstrating a blockchain-guided offloading mode for
distributed resource management of edge users, and
Nave Bayes’ learning was employed to linearly classify
offloaded and non-offloaded instances.

Nguyen et al.
[208]

2021
Blockchain, DRL,

Edge/cloud computing

Developing a secure computation offloading scheme by
combining blockchain and DRL for meeting the secur-
ity and offloading requirements in mobile edge-cloud
IoT networks.

Liao et al. [209] 2020
Blockchain, ML,
Fog computing

Utilizing smart contracts and Merkle hash trees to intro-
duce a blockchain- and ML-assisted task offloading fra-
mework under the vehicular fog computing network.

Content Caching

Qiu et al. [211] 2020 Blockchain, DL

Building a blockchain- and DL-guided edge intelligence
framework entitled AI-Chain, which can handle the joint
resource allocation problem of networking, edge compu-
ting and content caching.

Dai et al. [213] 2020
Permissioned blockchain,

DRL, Edge computing

Combining permissioned blockchain and DRL to design
a secure and intelligent content caching scheme in vehi-
cle edge computing networks.

Cui et al. [215] 2020 Blockchain, FL

Discussing a compression algorithm named CREAT ap-
plied to the caching, and this algorithm integrates FL
and blockchain.

Zhang et al. [216] 2020
Blockchain, DRL,

D2D, MEC

Introducing a blockchain- and smart contract-guided di-
stributed cache sharing incentive mechanism to upgrade
user sharing-depended caching performance.

Security and Privacy

Dhieb wt al. [218] 2020
Permissioned blockchain,

ML

Integrating permissioned blockchain and AI to develop
a distributed heterogeneous IoT network architecture
to add additional security performance.

Wang et al. [219] 2021
Hierarchical blockchain,

Transfer learning
A secure user authentication mechanism called ATLB
with the help of transfer learning and blockchain.

Kumar et al. [222] 2021
Blockchain, DL,
Smart contract

Leveraging blockchain and DL to provide two levels of
security and privacy for collaborative intelligent transp-
ortation systems.

Otoum et al. [225] 2022 Blockchain, FL

Constructing an adaptive trust model by combining FL
and blockchain, and this model treated personal trust
as a probability.

offloading framework. The framework utilizes smart contracts

and Merkle hash trees to facilitate fair task offloading and

mitigate various security attacks. Then, to tackle the task

offloading optimization problem, an intelligent task offloading

algorithm based on online learning was delineated in [209].

Without requiring the information and CSI of the vehicle

fog computing server, this algorithm can learn the long-term

optimal unloading strategy and effectively reduce the unload-

ing delay, queuing delay, and switching cost. In an air-to-

ground integrated power system, the work of [210] formulated

a joint optimization problem of device-side task offloading

and server-side resource allocation. Then, it demonstrated an

electromagnetic interference-aware computational offloading

algorithm by combining blockchain and semi-distributed learn-

ing.

3) Content Caching: Caching is introduced into the

6G communication architecture. Specifically, by deploying

caching in terminals, BSs, and core network gateways, popular

content is cached to the location closer to the user. Content

caching can realize the local response of some user requests,

reduce the transmission delay of the requested content, im-

prove the user experience, and balance the network load.

However, the current content caching strategy is relatively

static. Therefore, the caching performance depends heavily

on the popularity of the content and lacks the perception of

users’ personalized demands. At the same time, the caching
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deployment in the mobile environment brings great security

risks to the user’s data privacy. Blockchain and AI are key en-

abling technologies to address these challenges. For example,

in [211], a blockchain-guided edge intelligence framework en-

titled AI-Chain for 6G wireless networks was pioneered, which

integrates DL and blockchain. The framework benefits from

the transferability of DL. Specifically, each lightweight edge

node trains neural network components, and then shares local

learning results on the blockchain. To demonstrate the effec-

tiveness of the proposed framework, the work in [211] applied

AI-Chain to handle the joint resource allocation problem of

networking, edge computing, and content caching. Aiming at

the privacy leakage problem in cognitive vehicle networks, ref-

erence [212] provided a blockchain-inspired content caching

architecture. Under this framework, road side units (RSUs)

and vehicles that provide content cache the content in advance

and broadcast it to surrounding vehicles. Vehicles with content

requirements can selectively download the related content.

Once the content transaction is completed, the transaction

record is written to the blockchain and broadcast to all RSUs

and vehicles. To enhance the cache hit ratio, the cognitive

engine can sense the content demands of the underlying

vehicles. Then, in [212], the perception data is analyzed by ML

and DL algorithms, and predictive cached results are presented

to RSUs and vehicles that provide content. In vehicle edge

computing networks, a secure and intelligent content caching

scheme by combining permissioned blockchain and DRL

was demonstrated [213]. In this scheme, vehicles accomplish

content caching and BSs sustain the permissioned blockchain.

Furthermore, considering vehicle mobility, the work of [213]

constructed a vehicle-to-vehicle content caching optimization

problem, and applied the advanced DRL algorithm to obtain

the optimal caching strategies.

In machine-to-machine communication networks, a

blockchain- and edge computing-enabled network framework

was proposed in [214]. In this architecture, edge computing

improves data caching and computing capabilities, and

blockchain ensures data security and efficiency. To reduce

latency, the authors of [214] framed the joint optimization

problem of content caching, computation offloading, and

blockchain scheduling as a discrete Markov decision process.

Then, a dueling optimization algorithm inspired by a dueling

deep Q-network was adopted to solve this joint optimization

problem. To polish up the file caching hit ratio, a compression

algorithm named CREAT applied to the caching was provided

in [215]. CREAT integrates FL and blockchain, which can

cache files by predicting the popularity of different files

through the FL algorithm and speed up the response to

file requests from IoT devices. In the meantime, blockchain

technology ensures the security of data transmitted by IoT

devices and gradients uploaded by edge nodes. Additionally,

an advanced compression algorithm is adopted in [215] to

compress the uploaded gradients, so as to speed up the

training process of FL. The most critical reason for the

hindered development of user sharing-depended caching

solutions is the lack of incentive mechanism. To upgrade user

sharing-depended caching performance, the work of [216]

provided a blockchain- and smart contract-guided distributed

cache sharing incentive mechanism. In this mechanism, D2D

and MEC caching nodes incentivize their cache sharing

willingness by receiving expected rewards. Then, to depress

consensus latency and undertake confidence, a partially PBFT

consensus protocol was suggested. Furthermore, both the

cache placement problem and the scene selection problem

can be described as Markov decision processes [216]. Then,

the DRL algorithm with deep Q-Network was presented to

deal with these problems.

4) Security and Privacy: Security and privacy vulnera-

bilities increase with the scale of wireless communication

systems. Accordingly, the security and privacy of commu-

nication participants have become an important issue. The

combination of blockchain and AI can provide more effective

solutions to security and privacy challenges 6G in wireless

communication systems [217]. As an illustration, a distributed

heterogeneous IoT network architecture by integrating per-

missioned blockchain and AI was designed in [218], so

as to add additional security performance. Here, blockchain

is applied to share and store data of IoT devices. On the

hand, ML algorithms can detect Malware and cyberattacks

of distributed IoT networks and can classify these anomalous

behaviors in real time. On the other hand, the existing identity

authentication mechanisms have the problems of singleness

and poor adaptability. Based on this consideration, the authors

of [219] introduced a secure user authentication mechanism

called ATLB with the help of transfer learning and blockchain.

ATLB described layered blockchain to implement the privacy

protection of the authentication mechanism with collusion

attack and Sybil attack. In addition, to reduce the model

training time, reference [219] added transfer learning to opti-

mize the authentication mechanism and build a trustworthy

and intelligent blockchain. In the edge service network of

IIoT, a distributed ML scheme guided by blockchain can

guarantee the security and privacy of data processing of

multiple resource-constrained devices [220]. To reduce the

response delay of edge services, the proposed scheme of [220]

employed blockchain to replace cloud servers as trusted third-

party institutions. Moreover, a smart contract-based incentive

mechanism was applied to encourage multiple devices to

participate in computing tasks. Furthermore, a size-weighted

aggregation strategy was discussed to validate and integrate

model parameters, thereby improving model accuracy. The

SM2 public key cryptosystem was applied in [220] to complete

the privacy protection of model parameters in edge services.

There are also security and privacy challenges for data in

the software-defined Internet of Vehicles. To address these

challenges, the work in [221] developed a spatial crowd-

sourcing framework guided by multiple blockchains and DRL

together. In [222], blockchain and DL provided two levels of

security and privacy for collaborative intelligent transportation

systems. For the first level, smart contracts were employed

for secure and intelligent data communication. For the second

level, to prevent cyber attacks, LSTM auto-encoders in DL

encoded data into new formats. To mitigate the precipitately

growing security challenges of in-vehicle networks, a novel

blockchain- and AI-empowered trust management architecture

was developed in [223].
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More interesting, many works [224]±[228] have proved that

the combination of blockchain and FL can greatly enhance

data security and privacy. For example, to defeat the privacy

leakage problem in traditional device failure detection, the

blockchain-authorized FL scheme of [224] can verify the

integrity of the data. Then, an innovative centroid distance-

weighted joint averaging algorithm can alleviate the data

heterogeneity problem in device fault detection. In [225], an

adaptive trust model was constructed by combining blockchain

and FL, which treated personal trust as a probability. More-

over, under the constraints of certain security standards, the

trust value of the terminal devices in different networks was

evaluated. The study in [226] took advantage of blockchain

and FL to design a distributed multi-party collaborative data

sharing scheme. This scheme built and shared data models

through FL without directly displaying the original data, thus

realizing data privacy protection. Furthermore, permissioned

blockchains supported secure data retrieval, thereby further

controlling access to shared data and depressing the hazard of

data disclosure. Similarly, integrating blockchain and FL can

also be applied to enhance the security and privacy of data

during data transmission [227] and vehicle intrusion detection

[228].

B. IoT Smart Applications

IoT has become a fundamental component of future wireless

communication networks. Various smart IoT applications have

great potential to provide exciting services, which is receiving

more and more attention from academia and industry. IoT

is a huge network formed by combining various information

sensing devices with the Internet, realizing the interconnection

of people, machines, and things at any time and any place. In

this subsection, we will extensively discuss some important 6G

IoT smart applications supported by both blockchain and AI,

including smart healthcare [229]±[236], smart transportation

[237]±[246], smart grid [247]±[253], and UAV [254]±[261].

The analysis of integration of blockchain and AI for IoT smart

applications is shown in TABLE VIII.

1) Smart Healthcare: At present, due to the impact of the

new crown pneumonia epidemic, the integration of emerging

technologies and medical scenarios is accelerating. New mod-

els such as telemedicine and intelligent pre-diagnosis have

become rigid needs. Thus, the smart medical industry has ush-

ered in a new round of outbreaks. The fusion of two emerging

technologies, blockchain and AI, achieves leap-forward devel-

opment of smart healthcare in areas including electronic health

records, health insurance, biomedical research, drug supply,

procurement process management, and medical education. For

instance, a multi-party electronic health record sharing frame-

work entitled BinDaas was proposed in [229]. This framework

integrates two technologies, blockchain and DL. Here, the

blockchain stores the patient’s electronic health record data in

a secure manner. DL provides future disease risk predictions

for patients based on past repositories. Also, a lattice-based

key and signature verification method was developed in [229]

to fight against quantum and collusion attacks. The authors

of [230] designed a distributed secure e-health architecture

named Healthchain-RL by combining blockchain and DRL.

The blockchain in the designed architecture assembled hetero-

geneous healthcare institutions with dissimilar demands. At the

same time, the configuration of the blockchain network was

optimized in real time through the online enlightened policy-

making DRL algorithms, so as to accomplish a balance be-

tween security, delay, and cost. The work in [231] investigated

a blockchain- and DL-enabled secure and intelligent healthcare

diagnosis scheme. This healthcare diagnosis scheme mainly

involves three main steps: 1) sharing medical images based on

orthogonal particle swarm optimization (OPSO) algorithm; 2)

running hash value encryption through neighborhood indexing

sequence algorithm; 3) performing medical diagnosis by using

OPSO-DNN algorithms.

The study of [232] leveraged the advantages of blockchain

and FL to constitute a detection model for computed to-

mography (CT) scans of COVID-19 patients. The constituted

model identified COVID-19 patients from lung CT images

by applying the capsule network-supported segmentation and

classification method. Therein, a global DL model was trained

from data collected from different hospitals and facilities using

FL algorithms and blockchain was used to authenticate data

from different sources. Likewise, for screening and monitoring

the COVID-19 epidemic, the authors in [233] developed

a distributed collaborative healthcare architecture guided by

blockchain and FL. Different from the detection of CT images

in [232], reference [234] integrated blockchain and DNN to

extract feature data from existing datasets, thereby helping

to diagnose severe diseases such as COVID-19 and blood

cancer. Detecting infectious diseases is difficult in remote

and resource-poor rural areas. Meanwhile, smartphones are

predicted to be one of the main tools driving improvements

in healthcare delivery. Therefore, an end-to-end DeoxyriboNu-

cleic Acid (DNA) diagnostic platform based on smartphones

was proposed in [235]. In this platform, DL provided au-

tomatic detection of infectious disease DNA molecular test

results and their analysis. Blockchain was used for secure data

connection and management, thereby increasing the credibility

of the entire diagnostic platform. Most critically, the authors

of [235] also verified the feasibility of the proposed platform

through field tests in rural areas. AI algorithms can predict

the type of disease and surgery based on the patient’s basic

symptoms and historical health records. For example, the

extreme gradient boosting algorithm was applied in [236] to

classify diseases. In this reference, it described a blockchain-

and AI-enabled drone-aided smart telesurgery architecture

called BATS, which introduced smart contracts to maintain

the integrity and reliability of data stored on the blockchain.

During emergencies in traffic jams, UAVs can transport some

light healthcare items, such as medicines and surgical tools.

2) Smart Transportation: With the rapid development of

information technology, smart transportation has also ushered

in more development opportunities. Smart transportation refers

to the full use of big data, IoT, cloud computing, blockchain,

AI, and other technologies in the field of transportation.

Smart transportation can fully guarantee traffic safety, give

full play to the efficiency of transportation infrastructure, and

improve the operational efficiency and management level of
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TABLE VIII. Analysis of integration of blockchain and AI for IoT smart applications.

Taxonomy
Representative

References
Year Key Technologies Main Contributions

Smart Healthcare

Bhattacharya et al.
[229]

2021 Blockchain, DL
Using blockchain and DL to propose a multi-party electronic he-
alth record sharing framework entitled BinDaas.

Al-Marridi et al.
[230]

2021 Blockchain, DRL
Designing a distributed secure e-health architecture named Heal-
thchain-RL by combining blockchain and DRL.

Otoum et al. [233] 2021 Blockchain, FL
A distributed collaborative healthcare architecture guided by blo-
ckchain and FL for screening and monitoring COVID-19.

Mallikarjuna et al.
[234]

2021 Blockchain, DNN
Integrating blockchain and DNN to extract feature data from ex-
isting datasets, thereby helping to diagnose severe diseases such
as COVID-19 and blood cancer.

Guo et al. [235] 2021 Blockchain, DL
An end-to-end DNA diagnostic platform based on smartphones
for driving improvements in healthcare delivery.

Gupta et al. [236] 2021
Blockchain, AI,
Smart contract

Describing a blockchain- and AI-enabled drone-aided smart tel-
esurgery architecture called BATS.

Smart Transportation

Al Ridhawi et al.
[237]

2021 Blockchain, RL
A collaborative service composition approach by combining bl-
ockchain and RL to improve the quality of service for vehicles.

Song et al. [240] 2020 Blockchain, DNN
Providing a blockchain- and DNN-assisted smart vehicle co-lo-
calization scheme.

Jiang et al. [242] 2020
Blockchain, DRL,
Edge computing

Combining blockchain and multi-access edge computing to bui-
ld a video analytics architecture in autonomous driving systems.

Pokhrel et al.
[244]

2020
Blockchain, FL,

Consensus mechanism
Using blockchain-enhanced FL to propose a fully decentralized
communication system for autonomous vehicles.

Smart Grid

Keshk et al. [248] 2020
Blockchain, DL,

LSTM
Demonstrating an advanced privacy-preserving scheme by inte-
grating blockchain and DL in the environment of smart power.

Wang et al. [249] 2020 Blockchain, FL
A power management system for electric vehicles merging blo-
ckchain and AI on the platform of smart grid.

Ferrag et al. [250] 2020
Blockchain, DL,

RNN

Designing a blockchain- and DL-guided reliable energy excha-
nge architecture called DeepCoin to protect the smart grid
from malicious attacks.

Jamil et al. [251] 2021
Blockchain, ML,

RNN, LSTM

Providing a blockchain- and ML-assisted scheme for forecast-
ing P2P energy transactions to effectuate real-time scheduling
of energy in microgrids.

Gao et al. [252] 2021 Blockchain, Edge-AI
Adopting blockchain and edge-AI to formulate distributed ener-
gy trading and management system for smart microgrids named
FogChain.

UAV

Singh et al. [254] 2021 Blockchain, DL
Introducing a security scheme for information transmission be-
tween UAVs, which integrated blockchain and DL.

Feng et al. [255] 2022 Blockchain, FL
A novel secure identity authentication approach by leveraging
blockchain-backed FL to overcome the security challenges
of cross-domain UAVs’ authentication.

Pokhrel et al.
[257]

2021 Blockchain, FL
A blockchain- and FL-assisted knowledge sharing and collabo-
rative learning scheme for UAV swarms or LEO satellites.

Gumaei et al.
[259]

2021
Blockchain, DNN,
Edge computing

Presenting a UAV recognition and detection architecture by co-
mbining blockchain, deep DNN, and edge computing.

the transportation system. In this part, we focus on the role

of blockchain and AI in promoting smart transportation. To

improve the quality of service for vehicles in 6G networks,

the study in [237] discussed a collaborative service compo-

sition approach by combining blockchain and RL. Here, the

blockchain was applied to announce combined tasks under

certain constraints of service requests, ensuring that adjacent

nodes interact securely and record transactions. To quicken the

procedure of service composition path choice, the authors of

[237] employed an RL algorithm to pick the optimal solution

closest to the node request. To ward off traffic congestion,

reference [238] described a blockchain-guided secure crowd-

sourcing scheme. This scheme encouraged users to voluntarily

take part in traffic forecasting by sharing traffic information

to earn tokens. Meanwhile, users can also spend these tokens

to acquire the required traffic information from the network.

Then, with the help of an LSTM neural network, the study

of [238] fused the results of a feed-forward artificial neural

network trained on historical data to prognosticate traffic

congestion probabilities on real-time data. Similarly, the work

in [239] considered integrating blockchain, RL, and edge

computing to alleviate the traffic congestion problem.

Currently, vehicle positioning has challenges of low accu-

racy and network congestion in data sharing. To address these

challenges, a blockchain- and DNN-assisted smart vehicle

co-localization scheme was provided in [240]. This scheme

was benchmarked with multiple traffic signs, and the DNN

algorithm was applied to correct position of vehicles. For the

localization errors of multiple vehicles, the work of [240]

demonstrated a DL-inspired method for distance computation

and prognostication to turn down localization errors for com-

mon vehicles on the unchanged road segment. Additionally,

to actualize the safety information sharing between vehicles,

the corresponding mechanisms of message asking, message

selecting, message sharing, and punishment mechanism were

presented based on smart contracts. In the in-vehicle self-

organizing environment, an advanced blockchain-authorized

distributed software-defined security architecture was delin-

eated [241]. Then, the dueling deep Q-learning algorithm with

prior experience playback was adopted in [241] to procure
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the optimal strategy while satisfying the requirement of maxi-

mizing the system throughput. In autonomous driving vehicle

networks, the sharing and storage of massive video data is

terribly difficult. To cope with these difficulties, reference

[242] combined blockchain and multi-access edge computing

to build a video analytics architecture in autonomous driving

systems. This architecture completed the secure storage and

sharing of video data with the help of smart contract. Then,

the study of [242] formulated the joint optimization problem of

video offloading and resource allocation as a Markov decision

process. Moreover, a high-level DRL algorithm with asyn-

chronous advantage actor-critic was proposed to tackle this

joint problem. Improper lanes for self-driving cars can cause

tragic accidents, and thus, the authors of [243] demonstrated

an autonomous lane changing system assisted by blockchain

and collective learning. Blockchain ensured data security for

autonomous vehicles while encouraging vehicle resources to

join in collective learning. Then, an advanced algorithm based

on the deep deterministic policy gradient was used in [243] to

address the lane changing problem, so as to achieve optimal

autonomous driving policies.

Interestingly, the fusion of blockchain and FL powerfully

polishes up the performance of intelligent transportation sys-

tems [244]±[246]. For instance, on the basis of blockchain-

enhanced FL, the study in [244] proposed a fully decen-

tralized communication system for autonomous vehicles. In

the proposed system, the local on-vehicle ML model updates

are interchanged and validated with other vehicles in the

distributed manner. At the same time, the proposed system

made full use of the consensus mechanism of the blockchain

and can complete the update of local vehicle ML models with-

out any third-party server. To enhance the reliability of edge

data sharing between vehicles, a hybrid blockchain- and FL-

assisted secure data sharing framework was designed in [245].

In this framework, the hybrid blockchain was composed of the

permissioned blockchain and the local directed acyclic graph

of vehicle operation, which can further upgrade the security of

in-vehicle data. Furthermore, to further polish up the training

efficiency, the authors of [245] introduced an asynchronous

FL scheme for model learning from edge data, and preferred

the better participating node through the DRL algorithm. The

work of [246] demonstrated a layered blockchain- and FL-

embedded vehicle knowledge sharing system. This system

adopted a hierarchical blockchain to record the FL model.

Then, integrating a proof-of-learning-based consensus protocol

with high-precision hierarchical FL effectively prevent the

waste of a large amount of computing resources. Also, the

knowledge sharing process among vehicles was constructed

as a multi-leader and multi-follower non-cooperative game

problem in [246].

3) Smart Grid: The construction of a smart grid provides a

strong guarantee for improving the related functions of smart

cities, thus further accelerating the pace of urban intelligence.

As a network with extensive coverage, the smart grid should

realize the interaction with users, the intelligentization of

power grid equipment, the full automation of power produc-

tion, and the greening of energy, so as to comprehensively im-

prove the level of informatization and intelligence of the power

grid. Modern communication technology is fully utilized to

build a safe, reliable, green, and efficient smart grid. The appli-

cation of blockchain and AI to the smart grid can improve the

quality and efficiency of grid engineering, thereby enhancing

the stability of the smart grid system. For example, the work of

[247] systematically discussed the enabling role of blockchain,

AI and IoT in improving smart grid performance. In the

environment of smart power, reference [248] demonstrated

an advanced privacy-preserving scheme by integrating two

emerging technologies, blockchain and DL, which consisted

of a two-level privacy mechanism and an anomaly detection

mechanism. Specifically, the first-level privacy mechanism

applied a blockchain found on an enhanced PoW consensus

protocol to validate data integrity and diminish data poisoning

attacks. To avoid inference attacks, the second-level privacy

mechanism converted the raw data into an encoded form with

the assistance of a variational autoencoder. Then, in [248], an

LSTM-inspired anomaly detection mechanism employed two

public datasets to train and validate the output of the two-level

privacy mechanism. On the platform of smart grid, a power

management system for electric vehicles merging blockchain

and AI was creatively demonstrated in [249]. The system

applied artificial neural networks and FL to prophesy the

electricity consumption of electric vehicles. At the same time,

the blockchain can incorporate all distributed electric vehicles

to form a smart energy storage framework. The blockchain

traded memory and time for the security and transparency

performance of the proposed power management system. To

protect the smart grid from malicious attacks, the study of

[250] designed a blockchain- and DL-guided reliable energy

exchange architecture called DeepCoin. In DeepCoin, the

blockchain adopted the PBFT algorithm to accomplish the

consensus in the P2P energy system, thereby promoting users

to voluntarily trade redundant energy to other adjacent users.

In [250], the blockchain also applied bilinear pairing, short

signature, and hash function to complete the privacy protection

of smart grid users. Then, DeepCoin tracked down cyber-

attacks and deceitful transactions in smart grids through the

RNN-based DL algorithm.

Recently, microgrids are small-scale power systems that

utilize renewable energy sources to distribute electricity near

users. To effectuate the real-time scheduling of energy in

microgrids, the authors of [251] provided a blockchain- and

ML-assisted scheme for forecasting P2P energy transactions.

This energy transaction scheme was modeled and completed

on the permissioned blockchain network entitled Hyperledger

Fabric. At the same time, smart contracts performed real-

time scheduling of distributed energy and controllable loads.

In addition, RNN, LSTM, and bidirectional LSTM-powered

ML algorithms are employed to forecast energy requirements

in microgrids while downgrading electricity transportation ex-

penses. In [252], a distributed energy trading and management

system for smart microgrids named FogChain was presented.

FogChain adopted blockchain to formulate a decentralized

energy trading platform and applied edge-based AI methods

to draw distributed controllers for microgrids. In the same

direction, the work in [253] combined blockchain and ML

to address data sharing, processing, and forecasting problems
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in microgrid systems.

4) UAV: In recent years, with the development of informa-

tion technology, UAV has formed an intelligent aircraft that

combines multiple technologies such as flight control, network

communication, and electric power. UAVs can be regarded as

flying IoT devices, and have been widely applied in military,

agriculture, forestry, transportation, meteorology, and other

fields. UAV has the advantages of low cost, high dynamics,

and deployment flexibility. However, UAV communication

faces many threats such as being susceptible to interference,

inability to cover large areas, and unstable communication.

The combination of blockchain and AI provides new research

ideas for alleviating these threats. For example, under the

UAV Internet system, reference [254] introduced a security

scheme for information transmission between UAVs, which

integrated blockchain and DL. This scheme applied a zero-

knowledge-proof-based blockchain to maintain the security

and privacy of data dissemination between UAVs. Moreover,

the DL-inspired miner selection algorithm in [254] can obtain

the optimal miner node strategy, thereby shortening the block

generation time and transaction submission time. To overcome

the security challenges of cross-domain UAVs’ authentication,

a novel secure identity authentication approach by leverag-

ing blockchain-backed FL was provided in [255]. In this

approach, FL only shared the data model uploaded by the

authenticated UAV instead of directly sharing the original data.

The authors of [255] made full use of multi-signature smart

contracts to practice distributed cross-domain UAVs’ identity

authentication. And, to surmount the single point failure, these

multi-signature smart contracts were also employed to perform

aggregations of global model updates. In the IoT environment,

the work of [256] proposed a distributed dynamic resource

management and pricing system that integrated blockchain-as-

a-service (BaaS) and UAV-authorized MEC. Specifically, MEC

servers are installed on both the ground BSs and the UAVs

acting as the air BSs to process some blockchain tasks. BaaS

combined blockchain and cloud computing so that resource

management and pricing can be handled on BSs with MEC

servers in [256]. Then, in the case of incomplete information,

the interaction process of resource management and pricing

between BSs and peers of the proposed system was expressed

as a stochastic Stackelberg game with multiple leaders.

Additionally, UAV swarms or low earth orbit (LEO) satel-

lites are extremely vulnerable to security threats. Therefore,

reference [257] elucidated a blockchain- and FL-assisted

knowledge sharing and collaborative learning scheme. Specif-

ically, this scheme considered the influence of the number of

miners, block transfer, and the mobility of UAVs/LEOs, the

authors of [257] derived the probability of regular forks and

optimized the energy consumption of PoW computation for

blocks. More importantly, in [257], an advanced FL-enabled

algorithm was used to complete the resource allocation of

mobile mining. And, the coordination gains of blockchain

and FL for UAV swarms was illustrated. The work of [258]

integrated blockchain, AI, and UAV swarms to design an

autonomous detection framework for infectious diseases. Here,

UAV swarms can expand coverage and lessen human par-

ticipation. This detection framework applied a lightweight

blockchain and two-stage security authentication mechanism

to remote areas where the network is scarce to degrade

the burden of UAVs. Then, a DL-inspired algorithm was

provided to autonomously detect disease prevalence in [258].

The security of RF signal transmission between UAVs and

the accuracy of identification and detection are challenged.

Consequently, a UAV recognition and detection architecture

by combining blockchain, deep DNN, and edge computing

was elucidated in [259]. This architecture applied blockchain

to protect the security of data transmission. Moreover, the deep

DNN was adopted for training by using the collected RF signal

data from UAVs in different flight modes. Then, the trained

model was downloaded to edge devices to identify UAVs and

detect their flight modes. There are trade-off problems in terms

of quantity, energy consumption, coverage area, and height

when installing BSs on the UAV side (UAV-BS). To address

this deployment problem of UAV-BS, the study of [260]

demonstrated a blockchain- and ML-guided smart placement

scheme for UAV-BS. More interestingly, in 6G networks, the

work in [261] combined blockchain and FL can provide a

new idea for UAV-assisted construction of disaster response

systems.

C. Analysis of Operating Frequencies, Visions, and Require-

ments from the 6G Perspective

1) Operating Frequencies from the 6G Perspective: Consid-

ering the operating frequencies of AI and blockchain for 6G

is crucial from 6G perspective, as 6G networks have higher

requirements for high-speed data transmission and processing.

However, there are currently no established standards or fixed

ranges for the operating frequencies of AI and blockchain in

6G. Since 6G technology is still in the research and stan-

dardization phase, there is limited discussion and research on

this specific topic in the existing literature. Current works [2],

[5]±[8], [263], [264] primarily focus on the communication

characteristics, spectrum range, and key technologies of 6G.

The operating frequencies in 6G are expected to encompass

a wide range of spectrum, including low-frequency, mid-

frequency, high-frequency, as well as millimeter-wave and ter-

ahertz bands. However, the current work does not specifically

address the operating frequencies of AI and blockchain in

6G. Until further research and standardization developments,

specific discussions and research on the operating frequencies

of AI and blockchain for 6G may remain limited.

Although specific references may be limited, we can provide

a general discussion on the operating frequencies of AI and

blockchain in 6G networks. Millimeter-wave and Terahertz

Bands: 6G networks will utilize high-frequency millimeter-

wave and terahertz bands to achieve higher data transmission

rates and lower latency. The use of these frequency bands

will impact the operating frequencies of AI and blockchain,

requiring consideration of their performance and adaptability

in these bands. Power Consumption and Resource Man-

agement: 6G networks demand high performance while min-

imizing power consumption. When determining the operating

frequencies of AI and blockchain, a comprehensive consid-

eration of power consumption and resource management is
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necessary to achieve efficient computation and communica-

tion. Adaptive Adjustment Strategies: Given the dynamic

nature and diverse application requirements of 6G networks,

adaptive adjustment strategies are crucial for the operating

frequencies of AI and blockchain. By continuously monitoring

and analyzing network conditions, application demands, and

resource availability, it is possible to dynamically adjust the

operating frequencies of AI and blockchain to meet real-time

requirements and optimize network performance.

The operating frequencies of AI and blockchain for 6G

will be determined based on specific application scenarios

and requirements. For example, in the fields of IoT, UAV or

smart cities, different frequency bands may be used to support

the 6G secure services and 6G IoT smart applications by

integrating of AI and blockchain. The specific operating fre-

quencies will depend on communication requirements, device

characteristics, as well as the needed bandwidth and capacity.

Therefore, from the 6G perspective, determining the operating

frequencies of AI and blockchain requires considering multiple

factors and referencing the development of future 6G stan-

dards and the demand of practical application. Notably, the

discussion provided above only offers general perspectives on

operating frequencies and does not establish specific frequency

band ranges. As 6G technology continues to be researched

and developed, future studies and standardization efforts will

provide more specific and detailed guidance.

2) Visions from the 6G Perspective: The vision of 6G is

to build a highly intelligent, highly connected, and highly

adaptive network to meet the needs of future society and

industries. From the 6G perspective, the visions include several

key aspects. Ultra-high rates and ultra-low latency: The

vision of 6G is to achieve higher data transmission rates and

lower communication latency to support a wide range of ap-

plications, including enhanced mobile broadband, virtual and

augmented reality, high-definition video, etc. Through high-

speed and low-latency network transmission, the data process-

ing and interaction capabilities of AI and blockchain will be

enhanced, supporting more complex and real-time application

scenarios. This will provide a stronger foundation for inte-

grated AI and blockchain applications. Super connectivity:

The vision of 6G is to establish a super-connected network that

enables highly interconnected devices. The super-connected

network includes D2D, device-to-infrastructure, and device-to-

cloud connections. This will provide more connectivity options

and broader coverage for AI and blockchain services and

applications. Powerful intelligence and adaptability: The

vision of 6G is to build an intelligent network with edge

computing and distributed intelligence capabilities. This will

enable real-time processing and decision-making of AI and

blockchain technologies at the network edge, reducing latency

and improving performance. Moreover, the intelligent network

will be able to adaptively optimize based on application

requirements, providing more efficient support for AI and

blockchain services and applications. Security and privacy

protection: The vision of 6G is to ensure network security

and privacy protection to address the growing security threats.

In the services and applications of AI and blockchain, security

and privacy protection are crucial. 6G will provide stronger

security mechanisms, including encryption, identity authenti-

cation, and access control, to ensure the secure and reliable

operation of AI and blockchain services and applications.

In summary, the vision of 6G is an evolving and devel-

oping concept, and there is no unified definition or standard

yet. Therefore, our discussion is primarily based on current

research and academic discussions [2], [5], [7], [263] provide

a general 6G vision for blockchain and AI services and

applications.

3) Requirements from the 6G Perspective: To achieve the

6G vision discussed above, it naturally leads to the demand

for higher bandwidth, lower latency, super connectivity, high

security, and high reliability in 6G. Specifically, in the topic

of blockchain and AI for 6G, the requirements of 6G include

the following key aspects. High bandwidth demand: With

the increasing adoption of AI and blockchain services and

applications, there is a growing need for higher bandwidth

to support large-scale data transmission, real-time decision-

making, and complex computations. Low latency require-

ment: AI and blockchain services and applications require

real-time responsiveness. To support these services and ap-

plications, 6G needs to provide lower communication latency

to ensure fast data transmission and processing capabilities.

Large-scale connectivity capability: With the proliferation

of IoT devices and AI applications, 6G needs to have the

ability to connect a massive number of devices to facilitate

interconnection and data exchange. High security and pri-

vacy protection: Security and privacy are crucial in AI and

blockchain services and applications. 6G needs to provide

robust security mechanisms, including identity authentication,

encryption, and secure transmission, to ensure the confiden-

tiality and integrity of data. High reliability and robustness:

6G should exhibit high reliability and robustness to handle

various network environments and cope with interferences and

failures. This will ensure the stability and reliability of AI and

blockchain services and applications.

In summary, the aforementioned requirements [5], [8],

[263], [264] are based on the 6G perspective of integrating AI

and blockchain services and applications. As 6G technology

continues to evolve and standardization efforts progress, these

requirements may be further refined and supplemented.

In this section, we have broadly discussed the services

and applications of merging blockchain and AI for 6G net-

works. This includes the integration of blockchain and AI for

6G secure services, such as spectrum management, content

caching, computation allocation, and security and privacy. We

have also examined the 6G IoT smart applications of merging

blockchain and AI, covering areas such as smart healthcare,

smart transportation, smart grid, and UAV. Furthermore, we

have thoroughly discussed the operating frequencies, visions,

and requirements from the 6G perspective. In summary, this

section highlights the complementary nature of blockchain and

AI in addressing existing challenges and meeting the evolving

requirements of the 6G era. The integration of blockchain

and AI in 6G networks demonstrates the potential to enhance

secure services and enable advanced IoT applications. Addi-

tionally, the analysis of operating frequencies, visions, and

requirements provides valuable insights for shaping the future
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of 6G networks. By studying the integration of blockchain and

AI for 6G networks, we have gained a deeper understanding of

their synergistic capabilities and the opportunities they present

for transforming wireless communications.

IV. OPEN ISSUES, RESEARCH CHALLENGES, AND FUTURE

WORK

Integrating blockchain and AI in 6G wireless communica-

tions is currently a hot research topic. In the previous sections,

we focused on investigating the possibilities of combining

blockchain and AI. Moreover, we extensively discussed the

integration of blockchain and AI for wireless communications,

involving secure services and IoT smart applications. Research

on integrating blockchain and AI for wireless communications

is still emerging, but future works need to address some

questions and challenges. In this section, based on exten-

sive research works in current literatures, we summarize the

possible open issues and research challenges for integrating

blockchain and AI in 6G wireless communications. The pur-

pose is to provide beneficial inspirations and references for

future innovation research. We also explore potential research

directions in the future.

A. Towards Blockchain

In recent years, the research and application of blockchain

has begun to grow explosively. Blockchain is considered to

be the key technology leading the current information internet

to the value internet. Although blockchain has great potential

for 6G networks, there are still some challenges that limit its

widespread application in 6G networks.

As the number of transactions increases significantly, scal-

ability is the biggest hurdle limiting the widespread adoption

of blockchain technology in 6G networks. For example, the

Bitcoin and Ethereum systems process an average of 7 to

20 transactions per second, far behind the Visa system that

handles tens of thousands of transactions per second. More-

over, the multi-copy feature of the blockchain requires a large

amount of additional storage space, which increases storage

costs. This will result in limited space utilization, making it

difficult to support large-scale applications. There have been

many researchers improving the scalability of blockchains

by using techniques such as sidechains, lightning networks,

sharding, pruning, and directed acyclic graphs. However, these

methods still have their own problems, such as how to properly

divide the tiles, and which transactions to prune. In addition,

the blockchain is a high-energy-consumption industry. As an

illustration, the blockchain system based on the PoW con-

sensus mechanism relies on the computing power contributed

by the blockchain nodes. However, only part of the computing

power has been rewarded, and other computing power is doing

useless work, which wastes a lot of resources. This problem

of high energy consumption problem affects the popularization

and application of blockchain in 6G.

Security attack is the most important problem faced by the

blockchain so far, such as Bitcoin’s 51% attack and botnet at-

tack. The asymmetric encryption mechanism of the blockchain

will become more and more fragile with the development of

mathematics, cryptography, and computing technology. Secu-

rity issues are also a great threat to the further application of

blockchain to 6G networks. The data transactions recorded on

the blockchain are open and transparent, which is beneficial for

data sharing and verification, but not conducive to the privacy

protection of user information. As more and more personal

data is stored in blockchain-powered 6G networks, privacy

leakage becomes another key issue.

B. Towards AI

In recent years, AI, especially DL, has achieved great suc-

cess in computer vision, natural language processing, speech

recognition, and other fields. The researchers expect to apply

AI to all levels of the 6G system, thereby generating an intelli-

gent communication system, realizing the true interconnection

of everything, and meeting people’s ever-changing demands

for data transmission rates. However, there are still many

challenges and unsolved issues in implementing and managing

complex intelligent communication systems.

Inefficient data management schemes and high overhead of

information exchange among communication participants are

key bottlenecks in the development of AI technology. The AI-

based solutions, such as ML methods, usually require large

amounts of training data, which need to be collected and

implemented on a centralized server with sufficient storage

and computing resources. Nevertheless, current wireless com-

munication systems do not have access to massive amounts of

data to train models. In heterogeneous networks, aggregating

data from different sources to train models is also an open

problem. In 6G networks, users may have different service

quality requirements in different scenarios. For example, in

video streaming applications, users demand high throughput

and low latency at the cost of security. However, in payment

softwares, users require high security, even at the expense of

throughput. In this direction, designing a cross-layer, action-

based AI protocol for different applications is a key issue to

satisfy various service demands while balancing the network

resources of 6G networks.

Notably, in the current era of rapid development of AI,

data security and privacy issues are receiving increasing at-

tention. 6G network realizes interconnected intelligence by

supporting AI functions, and adopts a centralized network

architecture, which is vulnerable to hacker attacks. Moreover,

6G network needs to collect a large amount of user data

for training through billions of devices. The training data

involves a large amount of personal information, so AI can

easily lead to privacy leakage of user data. Using distributed

technology to design AI-enabled 6G network architectures can

actualize a decentralized security and trustworthy mechanism.

Without sending all data to the cloud computing center, the

distributed technology processes data where it is generated,

which can alleviate the problem of privacy leakage to a

certain extent. Nevertheless, communication needs to exchange

the knowledge information perceived by both parties and

update the knowledge bases of both parties collaboratively,

which also leads to the risk of privacy leakage of local data.

How to develop an efficient coordination mechanism among
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communication participants without causing any private data

leakage remains an urgent problem to be solved.

C. Towards Blockchain- and AI-assisted Wireless Communi-

cations

Integrating blockchain and AI brings new opportunities to

6G networks, as well as some open issues and research chal-

lenges. For example, the natural conflict between blockchain

and AI, the processing of a large amounts of data, and the

collaborative optimization of multiple systems and multiple

indicators. Furthermore, the effectiveness and feasibility of

blockchain- and AI-assisted wireless communications still

need to be verified by large-scale practice of wireless com-

munication networks.

There are some conflicts with the combination of blockchain

and AI. For example, the execution results of smart contracts

in blockchains are often deterministic. While, the execu-

tion results of AI algorithms are usually uncertain, random,

and unpredictable in most cases. The contradiction between

blockchain and AI poses certain challenges for AI embedded

in blockchain to optimize the execution decisions of 6G net-

works. Therefore, in future research, a new solution is required

to deal with the contradiction between the certainty of smart

contracts and the randomness of AI algorithms. The new so-

lution can handle approximate calculations for smart contracts

and design consensus protocols for each participating node of

blockchain. The purpose of the new solution is to output the

decision results under the 6G network with specific certainty,

high accuracy, and high precision. With the explosive growth

of data in 6G networks, the processing of large amounts of

data in blockchain- and AI-assisted wireless communication

systems is a terribly large challenge. Typically, blockchain is

applied to securely collect and store large amounts of data,

and AI uses these data for model training processing. The

massive unlabeled and unclassified datasets are intractable for

AI training. At the same time, the blockchain also presents

a potential bottlenecks in storing these large-scale distributed

data. For example, the data recorded on the blockchain is open

and transparent. The blockchain-based storage method is ben-

eficial for data sharing and verification, but not conducive to

data privacy protection. Furthermore, at present, most works in

related kinds of literature often only optimize a single perfor-

mance index in a single wireless communication system. The

collaborative optimization of multiple performance indexes of

multiple wireless communication systems is ignored. However,

with the maturity and in-depth research of blockchain and

AI technologies in the future, the solutions proposed for

the performance of different wireless communication systems

can be combined with each other. Thereby, the goal of co-

optimizing multiple performances of multiple systems can be

achieved.

Observing the existing literature, blockchain- and AI-

assisted wireless communications are still in the infant stage.

Many works apply blockchain to create a trusted environ-

ment for wireless communications, and provide prediction,

optimization, identification, detection, and decision-making for

wireless communication systems through AI algorithms. Few

works have really deeply integrated blockchain and AI into

wireless communications. Whether we look at the current tech-

nical indicators of blockchains or the actual implementation of

AI and 6G networks, there are still many uncertainties to truly

realize the integration and implementation of blockchain and

AI technologies for 6G networks. The potential outcomes of

the fusion of blockchain and AI for 6G networks are also

difficult to assess. Therefore, while actively investigating the

integration of blockchain and AI for 6G networks, we must

also look at it rationally and focus on practical implementation.

In the future, we will continue to take an organic combination

and flexible and innovative approach to truly realize the

practice and exploration of the integration of blockchain and

AI in 6G wireless communications.

D. Future Work

In future work, we still need to tackle the technical barriers

of blockchain and AI. We can deeply investigate the matching

and joint optimization of blockchain- and AI-powered 6G

networks in terms of performance indicators, security, stability,

etc. We can also further research and ensure the healthy and

sustainable development of blockchain and AI technologies in

6G networks. In addition, the Federal Communications Com-

mission, at the 2018 US Mobile World Congress, emphasized

that 6G can introduce blockchain technology into spectrum

sharing [265]. Research institutions such as the Institute of

Electrical and Electronics Engineers and the France’s Spec-

trum Regulator have also begun to explore the application of

blockchain to manage spectrum [266]. Thus, we will focus

on the fusion of blockchain and AI to obtain smarter and

more distributed dynamic wireless resource allocation. 6G

can combine emerging advanced technologies such as cloud

computing, edge computing, and big data to promote the

development of blockchain and AI technologies. Accordingly,

the mutual promotion and integration of blockchain, AI, and

6G is also one of the key research directions in the future.

With the further improvement of blockchain and AI, academia

and industry will continue to transform theory into technology

and put it into practice. We believe that future integration of

blockchain and AI will be more in-depth, and the scenarios

applied to 6G networks will be more abundant. Deploying

Blockchain and AI in 6G networks will bring more surprises

and possibilities to our lives.

In this section, we have outlined the open issues and

research challenges associated with integrating blockchain and

AI in 6G wireless communications. Future work should focus

on innovative solutions for scalability and energy efficiency in

blockchain, as well as exploring techniques for security and

privacy protection. Additionally, efficient data management

schemes and cross-layer AI protocols need to be developed to

address AI-related challenges. The integration of blockchain

and AI for 6G networks is still in its early stages, and

future research should aim to overcome technical barriers

and uncertainties, promote mutual promotion and integration,

and explore practical applications. Overall, addressing these

challenges and furthering the integration of blockchain and AI

in 6G networks will bring significant advancements to wireless

communications.
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V. CONCLUSION

This survey reviewed the latest progress of blockchain and

AI for 6G wireless communications. We began our compre-

hensive survey with a basic overview of blockchain and AI.

Specifically, we briefly described the concepts, characteristics,

and categories of blockchain and AI. The recent developments

in applying blockchain and AI to wireless communications,

respectively, were also showcased. To thoroughly explore

the possibility of combining blockchain and AI, we started

with two aspects of blockchain-assisted AI and AI-aided

blockchain. We also highlighted the motivations for integrating

blockchain with AI for 6G wireless communications. Next,

we then extensively discussed the simultaneous deployment

of blockchain and AI in 6G wireless communication systems,

involving secure services and IoT smart applications. In partic-

ular, a comprehensive exploration of the widely popular secure

services supported by blockchain and AI was conducted,

spotlighting spectrum management, computation allocation,

content caching, and security and privacy services. In addition,

we also covered the latest achievements of blockchain and

AI empowerment in various IoT smart applications. We made

an exhaustive analysis from four scenarios: smart health-

care, smart transportation, smart grid, and UAV. Furthermore,

we have thoroughly discussed operating frequencies, visions,

and requirements from the 6G perspective. Finally, we have

pointed out several open issues, research challenges, and

potential research directions toward blockchain and AI for 6G

networks.

In summary, this survey attempts to comprehensively ex-

plore the technologies related to blockchain and AI for wire-

less communications. Although the research on integrating

blockchain and AI for 6G networks is still in its infancy,

it is obvious that blockchain and AI will significantly uplift

the performance of various services and applications in 6G

networks. We believe our study will shed valuable insights

into the research challenges associated with blockchain- and

AI-assisted 6G networks as well as motivate interested re-

searchers and practitioners to devote more research efforts to

this promising area.
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