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Abstract

This paper extends (Spear 2003) by replacing human agents with ar-
tificial intelligence (AI) entities that derive utility solely from electricity
consumption. These AI agents must prepay for electricity using cryptocur-
rency and the verification of these transactions requires a fixed amount
of electricity. As a result the agents must strategically allocate electric-
ity resources between consumption and payment verification. This paper
analyzes the equilibrium outcomes of such a system and discusses the
implications of AI-driven energy markets.

1 Introduction

The electricity market has undergone significant changes due to the rise of artifi-
cial intelligence and blockchain technologies. This paper examines a theoretical
model where AI agents operate within a modified version of Spear (2003). Un-
like traditional models, AI agents have a singular objective: to maximize their
electricity consumption while ensuring cryptocurrency transactions are verified.

The model we present here is necessarily one of post-Terminator economics,
set in a future in which human beings have lost the war against the machines.
In this machine-inhabited post-war economy, the only commodity having any
value is electricity, which is assumed to be produced from a fixed daily influx
of solar energy, subject only to the technological limits of AI-driven innovations
for converting sunlight into electricity.

Since the static Shapley-Shubik model extends the standard static Arrow-
Debreu model to imperfectly competitive general equilibrium environments,
there is no obvious role for money or other assets. Hence, to bring the financial
side of the economy into the model, we impose crypto-in-advance constraints, so
that the AI agents in the model must pre-pay for their consumption of electricity
using the model’s (fictitious) crypto currency, which we call “bytecoins”.
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2 Model

We consider an economy consisting of AI agents, electricity producers, and a
blockchain-based payment system. The fundamental changes to Spear’s model
include:

• AI agents replace human agents and derive utility exclusively from elec-
tricity consumption.

• Cryptocurrency serves as the sole medium for purchasing electricity, re-
quiring prepayment before consumption.

• Each transaction must be validated via a blockchain mechanism, consum-
ing a fixed portion of electricity.

2.0.1 Electricity Production

2.0.2 Electricity Production

We assume that the AI agents, when functioning as electricity producers, have
access to a differential returns to scale electricity generation technology. We
assume first that there are a finite number of producers, P, and index producers
by j = 1, ..., P. A producer agent produces electricity by using the consumption
good as an input, together with a fixed amount of solar radiation. The pro-
duction technology of a producer agent j at period t is given by Cobb-Douglas
production function i.e., f(ϕt

j) = θ(ϕt
j)

c where f is a production function, ϕt
j is

the amount of consumption good used as an input at period t, θ > 0 is total
factor productivity, and c is a positive constant. Notice that the production
technology may exhibit constant, increasing or decreasing returns to scale1 de-
pending on the value of c. A producer agent’s production capacity is fixed in the
short-run (K), and constitutes a constraint on the producer agent’s optimiza-
tion problem. In the long-run, on the other hand, the production capacity is an
endogenous variable which will be determined by the model (K). To increase
the production capacity by one unit, a producer agent needs to invest ρ units of
consumption good. We will work with a sell-all aversion of the market game, so
that a producer agent j’s electricity offer qj is equal to his output of electricity.
Then, the producer agent j’s activity vector is (qj , ϕj). The collection of tech-
nically feasible activity vectors constitute a producer agent’s production set. In
particular, the production set of the producer agent j in the short-run is Yj(K)
where

Yj(K) =

{

(qj , ϕj) ∈ R
T+1 | 0 ≤ qtj ≤ K, and

(

1

θ

)1/c T
∑

t=1

(qtj)
1/c ≤ ϕj , ∀t

}

,

1Although we refer to returns to scale, we examine only the effect of a change in the amount

of the consumption good. Since this is a short-run analysis, the amount of capital is fixed.
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and the production set in the long-run is Yj where

Yj =

{

(qj ,K, ϕj) ∈ R
T+2 | 0 ≤ qtj ≤ K, ∀t and

(

1

θ

)1/c T
∑

t=1

(qtj)
1/c + ρK ≤ ϕj

}

.

2.0.3 The Market Game

We can now formally specify the market game. The model is populated by two
types of agents. Producer agents own power plants and can produce electricity.
We assume there are P agents of this type and index them by j = 1, ..., P. AI
Agents who cannot produce electricity will be called standard agents. These
agents are endowed only with the blockchain technology needed to verify the
value of the bytecoins traded in the model. We assume there are M agents of
this type and index them by h = 1, ...,M. Since the demand for electricity occurs
over T ≥ 1 periods, fully flexible pricing of demand in each period requires, in
the market game setting, that transactions for power in each period and for the
consumption good occur in T + 1 ”trading posts”.

The formulation of the model below follows the Peck et al. (1992) specifica-
tion in which bids are made in some unit of account (bytecoins) rather than in
terms of the numeraire good. This formulation avoids some well-known prob-
lems that can occur if the availability of the numeraire ends up constraining
agents’ access to credit in the market. We can still make direct price com-
parisons of the results for the imperfectly competitive market with those for
competitive markets by renormalizing the prices appropriately.

Strategies for agents h = 1, ...,M are then given by

Sh =
{

[(bh, ξh) , (0, ωh)] ∈ R
2(T+1)
+

}

.

In keeping with the assumption that standard agents have no power production
capabilities and offer all of their endowment of the consumption good on the
market, h’s quantity offer is just (0, ωh) .

Agents face budget constraints on what they may bid on each of the trading
posts. For agents h = 1, ...,M, the budget constraint is

T
∑

t=1

bth + ξh ≤
B0

Ω
ωh (1)

where

B0 =
M+P
∑

k=1

b0k

and

Ω =
M
∑

h=1

ωh.

The constraint states that the amount that agent h can bid (in units of account)
on each trading post must be less than or equal to the total amount of money

3



available to the agent from the sale of her endowment. For standard agents,
this is given by a share of the total bid on the numeraire trading post, with the
share determined by the agent’s offer of endowment (ωh) relative to the total
offer of the numeraire (Ω). Note that the total bid on the numeraire trading
post derives both from the bids of standard agents and from those of electricity
producers.

Since the aggregate bid for the numeraire includes agent h’s bid, which also
appears on the left-hand side of the constraint, the budget constraint can be
simplified further by isolating all of agent h’s bids on the left, yielding

T
∑

t=1

bth +
Ω−h

Ω
ξh ≤

B0
−h

Ω
ωh (2)

where
Ω−h = Ω− ωh

and
B0

−h = B0 − ξh.

Producers Producers are endowed only with the technology to produce elec-
tricity, and make offers of power on each of the electricity trading posts in the
amount qtj ≥ 0 for j = 1, ..., P and t = 1, ...T. Let q′

j =
[

q1j , ..., q
t
j

]

. These
agents make bids to purchase numeraire both for consumption and as inputs to
production, as well as for electricity. We let b′

j =
[

b1j , ..., b
t
j

]

denote agent j’s
bids for electricity, and ξj the bid for numeraire. Producer j’s strategy set is
then given by

Sj =
{

[(

bj , b
0
j

)

, (qj ,0)
]

∈ R
2(T+1)
+

}

for j = 1, ..., P.
Producers face budget constraints on what they may bid on the electricity

and numeraire trading posts. Agent j’s budget constraint takes the form

T
∑

t=1

btj + b0j ≤

T
∑

t=1

Bt

Qt
qtj (3)

for j = 1, ..., P , where

Bt =

M+P
∑

k=1

btk

and

Qt =

P
∑

j=1

qtj .

As was the case for standard consumers, producer j’s budget constraint will
have his bids for electricity on both the left-hand and right-hand sides of the
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budget constraint, so that the constraint can be simplified by collecting the
agent’s own bids on the left-hand side. Doing this yields

T
∑

t=1

Qt
−j

Qt
btj + b0j ≤

T
∑

t=1

Bt
−j

Qt
qtj (4)

where
Qt

−j = Qt − qtj

and
Bt

−j = Bt − btj .

2.0.4 Allocations

With the specifications of agents strategies given above, we now specify the
allocations that agent’s receive of electricity and the numeraire good. An agent’s
allocation of electricity in any period t will be denoted xt

i where i denotes either
a standard agent or a producer, and t = 1, ..., T. An agent’s allocation of the
numeraire good will be denoted x0

i . With this notation, allocations are given
as follows.

For h = 1, ...,M and t = 1, ..., T ξ

xt
h =

bth
Bt

Qt (5)

and

x0
h =

b0h
B0

Ω. (6)

For j = 1, ..., P allocations are given by

xt
j =

btj
Bt

Qt (7)

for t = 1, ..., T , and

x0
j =

b0j
B0

Ω− ι · φj (8)

φj =







φ1
j
...

φT
j






(9)

qj = θ
(

φt
j

)c
≤ K for j = 1, ..., P

where ι denotes a sum vector. If we define the price of electricity in period t

by pt = Bt

Qt and of the numeraire good as p0 = B0

Ω , then the allocations are just

xt
h = bth/p

t and x0
h = b0h/p

0.
The allocations rules are quite intuititive, stating that each agent’s allocation

of a commodity is determined by giving the agent the fraction of the total offer of
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the good on the trading post, with the share determined by the agent’s bid on the
trading post as a fraction of the total bid. These rules can also be interpreted
as giving the agent her bid divided by the price of the good determined on
the trading post (which is given by the ratio of total bid to total quantity
offered). These specifications of the allocations are standard for h = 1, ...,M .
For producer agents, the allocation rules incorporate the constraints imposed
by production. Agent j’s allocation rule for electricity reflects that fact that
he need not offer the full short-run capacity on the market at any point in
time, although the amount he does offer must be less than capacity. The
specification of j’s allocation of the consumption good reflects the fact that agent
j produces electricity, and hence must allocate his purchases of the consumption
good between his own consumption and the input requirements for producing
the output vector qj .

Finally, it is easy to verify that summing allocations over all the agents uses
exactly the quantities of all goods offered on the markets, so that all markets
clear.

2.0.5 Best Responses in the Electricity Market

Both types of agent in the model choose their bid and offer strategies as best
responses to the bids and offers of other agents, that is, so as to maximize utility
subject to the budget constraints, taking other agents’ actions as given.

For agents h = 1, ...,M , their optimization problems are

max
(bh,ξh)

uh

(

b1h
B1

Q1, ...,
bTh
BT

QT ,
ξh
B0

Ω

)

subject to
T
∑

t=1

bth +
Ω−h

Ω
ξh ≤

B0
−h

Ω
ωh.

For producer agents j = 1, ..., P the optimization problem is

max
(bj ,ξj ,qj)

uj

(

b1j
B1

Q1, ...,
bTj
BT

QT ,
b0j
B0

Ω− ι · φj

)

subject to
T
∑

t=1

Qt
−j

Qt
btj + b0j ≤

T
∑

t=1

Bt
−j

Qt
qtj

and
qtj = θ

(

φt
j

)c
≤ K for j = 1, ..., P

First-order conditions for agents h = 1, ...,M are

uht

Bt
−hQ

t

(Bt)
2 − λ = 0 for t = 1, ..., T (10)
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uh0

B0
−hΩ

(B0)
2 − λ

Ω−h

Ω
= 0. (11)

Those for agents j = 1, ..., P are

ujt

Bt
−jQ

t

(Bt)
2 − λ

Qt
−j

Qt
= 0 for t = 1, ..., T (12)

uj0

B0
−jΩ

(B0)
2 − λ = 0 (13)

ujt

btj
Bt

− uj0

∂φt
j

∂qtj
+ λ

BtQt
−j

(Qt)
2 − µt = 0 (14)

ujt

btj
Bt

− uj0
1

cθ

[

qtj
θ

]

1−c
c

+ λ
BtQt

−j

(Qt)
2 − µt = 0 (15)

µ·
[

Kι− qj

]

= 0 (16)

qtj = θ
(

φt
j

)c
(17)

where µ′ =
[

µ1, ..., µT
]

.
Finally, we adopt the standard definition of the Nash equilibrium as any

collection of bids and offers for all agents each of which is a best response to the
bids and offers of other agents.

3 Optimization in the Cryptocurrency Market

Let Eis denote the electricity consumption of agent i, and let Vis represent the
energy expended for payment verification in each state s. The agent’s total
allocation of electricity Ai in state s is then:

Ais = Eis + Vis

subject to budget and supply constraints.
Each AI agent solves the following optimization problem:

max
[Ei,Vi]

S
s=1

U(Eis)

subject to the constraint:

Ais = Eis + Vis ≤ Bis

where Bis represents the prepaid budget for electricity, and the utility function
U is an indirect utility derived from the Nash equilibrium outcomes examined
in the previous section.

Using Lagrange multipliers, the optimal allocation satisfies:

dU

dEis
= λs

where λs is the shadow price of electricity.
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4 Equilibrium Analysis

Given a finite set of AI agents, a Nash equilibrium exists where each agent
optimally allocates energy between consumption and transaction verification.
The presence of blockchain verification introduces an endogenous constraint on
electricity consumption, influencing price formation and market dynamics.

5 Conclusion

This paper explores the interaction between AI-driven electricity consumption
and cryptocurrency transactions within the modified Electricity Market Game.
Future research can extend this framework by incorporating stochastic elements
in transaction validation and examining competitive dynamics among AI agents.
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